1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
4.Academy of Shenzhen State Microelectronic Co., Ltd., Shenzhen 518004, China
5.Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, Guangzhou 510610, China
Corresponding author: j.liu@impcas.ac.cn.
Scan for full text
Chang Cai, Tian-Qi Liu, Xiao-Yuan Li, et al. Heavy-ion and pulsed-laser single event effects in 130-nm CMOS-based thin/thick gate oxide anti-fuse PROMs. [J]. Nuclear Science and Techniques 30(5):80(2019)
Chang Cai, Tian-Qi Liu, Xiao-Yuan Li, et al. Heavy-ion and pulsed-laser single event effects in 130-nm CMOS-based thin/thick gate oxide anti-fuse PROMs. [J]. Nuclear Science and Techniques 30(5):80(2019) DOI: 10.1007/s41365-019-0602-6.
Single event effects of 1-T structure programmable read-only memory (PROM) devices fabricated with a 130-nm complementary metal oxide semiconductor (CMOS)-based thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset (SEU) for radiation-hardened PROMs were measured using a linear energy transfer (LET) ranging from 9.2 to 95.6 MeV·cm,2,·mg,-1,. The result indicated that the LET threshold for a dynamic bit upset was ~9 MeV·cm,2,·mg,-1, which was lower than the threshold of ~20 MeV·cm,2,·mg,-1, for an address counter upset owing to the additional triple-modular-redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing ,209,Bi ions with extremely high LET values (~91.6 MeV·cm,2,·mg,-1,) and large ion fluence (~1 × 10,8, ions·cm,-2,). To identify the detailed sensitive position of an SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device. This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a,181,Ta experiment. Based on the experimental data and a rectangular parallelepiped (RPP) model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRÈME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.
Anti-fuse PROMSingle event effectsHeavy ionsPulsed laserSpace error rate
S. M. Guertin, G. M. Swift and D. Nguyen, Single-event upset test results for the Xilinx XQ1701L PROM. In Radiation Effects Data Workshop (REDW), 1999 IEEE (1999), pp. 35-40. doi: 10.1109/REDW.1999.816054http://doi.org/10.1109/REDW.1999.816054
J. George, G. Swift, S. Guertin et al., Heavy ion SEE testing of Xilinx One-time programmable configuration PROMs. In Radiation Effects Data Workshop (REDW), 2004 IEEE (2004), pp. 72-78. doi: 10.1109/REDW.2004.1352908http://doi.org/10.1109/REDW.2004.1352908
C.P. Han, L. Zhang, Y.P. Zou et al., Design and implementation of high reliable spaceborne reconfiguration system. In International Conference on Electronics Information and Emergency Communication (ICEIEC), 2016IEEE (2016), pp. 273-277. doi: 10.1109/ICEIEC.2016.7589737http://doi.org/10.1109/ICEIEC.2016.7589737
S. Chiang, R. Wang, J. Chen, et al. Oxide-Nitride-Oxide antifuse reliability. In International Reliability Physics Symposium 28th Annual Proceedings(IRPS), 1990 IEEE(1990)pp. 186-192. doi: 10.1109/RELPHY.1990.66084http://doi.org/10.1109/RELPHY.1990.66084
O. Kim, C. J. Oh, and K. S. Kim, “CMOS trimming circuit based on polysilicon fusing,” Electron. Lett., 34, 355-356(1998). doi: 10.1049/el:19980320http://doi.org/10.1049/el:19980320
E. Hamdy, J. McCollum, S. O. Chen et al., “Dielectric based antifuse for logic and memory ICs,” in IEDM Tech. Dig (IEDM), 1988 IEEE (1988), pp. 786-789. doi: 10.1109/IEDM.1988.32929http://doi.org/10.1109/IEDM.1988.32929
X. Fan, Dissertation, University of Electronic Science and Technology of China, 2011. (in Chinese)
L. Zou, Y.L. Deng, G.X. Pei, and Ming Du, Research on SEU Characteristics of PROM Bit-cells, Computer Measurement & Control, 21, 2544-2546(2013). doi: 10.16526/j.cnki.11-4762/tp.2013.09.064http://doi.org/10.16526/j.cnki.11-4762/tp.2013.09.064 (in Chinese)
C. Geng, J. Liu, K. Xi et al., Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence. Chin. Phys. B. 22, 059501 (2013). doi: 10.1088/1674-1056/22/5/059501http://doi.org/10.1088/1674-1056/22/5/059501
C. Geng, X.Y. Li, Y. Lin et al., Investigation single event effects characterization on configuration PROMs of FPGA induced by heavy ions. Nucl. Phys. Rev. 33, 359-363 (2016). doi: 10.11804/NuclPhysRev.33.03.358http://doi.org/10.11804/NuclPhysRev.33.03.358 (in Chinese)
J.L. Barth, C.S. Dyer, E.G. Stassinopoulos et al. Space, atmospheric, and terrestrial radiation environments. IEEE Trans. Nucl. Sci. 50, 466-481 (2003). doi: 10.1109/TNS.2003.813131http://doi.org/10.1109/TNS.2003.813131
J. Liu, J. L. Duan, M.D. Hou, et al., SEU ground and flight data in Static Random Access Memories. Nucl. Instrum. Methods Phys. Res., Sect. B. 245, 342-345 (2006). doi: 10.1016/j.nimb.2005.11.125http://doi.org/10.1016/j.nimb.2005.11.125
Z.G. Zhang, J. Liu, M.D. Hou et al., Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation. Chin. Phys. B. 8, 086102 (2013). doi: 10.1088/1674-1056/22/8/086102http://doi.org/10.1088/1674-1056/22/8/086102
S. P. Buchner, F. Miller, V. Pouget et al. Pulsed-Laser testing for Single-Event Effects investigations. IEEE Trans. Nucl. Sci. 60, 1852-1875 (2013). doi: 10.1109/TNS.2013.2255312http://doi.org/10.1109/TNS.2013.2255312
Y.G. Jiang, G.Q. Feng, Z. Xiang et al., Pulsed laser method for SEE testing in FPGAs. Atom. Energ. Sci. Technol. 46, 582-586 (2012). doi: 10.13700/j.bh.1001-5965.2013.0514http://doi.org/10.13700/j.bh.1001-5965.2013.0514 (in Chinese)
G.Q. Feng, Y.G. Jiang, Z. Xiang et al., Comparison of Multi-bit upset in FPGA induced by pulsed laser and heavy ions. Atom. Energ. Sci. Technol. 48, 732-736 (2014). doi: 10.7538/yzk.2014.48.S0.0732http://doi.org/10.7538/yzk.2014.48.S0.0732 (in Chinese)
R.A. Weller, M.H. Mendenhall, R. A. Reed et al., Monte Carlo Simulation of Single Event Effects. IEEE Trans. Nucl. Sci. 57, 1726-1740 (2010). doi: 10.1109/TNS.2010.2044807http://doi.org/10.1109/TNS.2010.2044807
A.J. Tylka, J. H. Adams, P. R. Boberg et al., CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code. IEEE Trans. Nucl. Sci. 44, 2150-2160 (1997). doi: 10.1109/TNS.2012.2218831http://doi.org/10.1109/TNS.2012.2218831
M.H. Mendenhall and R.A. Weller, A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations, Nucl. Inst. & Meth. A 667, 38-43 (2012), doi: 10.1016/j.nima.2011.11.084http://doi.org/10.1016/j.nima.2011.11.084
E.L. Petersen, The SEU Figure of Merit and Proton Upset Rate Calculations. IEEE Trans. Nucl. Sci. 45, 2550-2562 (1998). doi: 10.1109/23.736497http://doi.org/10.1109/23.736497
J. Barak, R.A. Reed, K.A. LaBel, On the figure of merit model for SEU rate calculations. IEEE Trans. Nucl. Sci. 46, 1504-1510 (1999). doi: 10.1109/23.819114http://doi.org/10.1109/23.819114
P. E. Dodd, L.W. Massengill, Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 50, 583-601 (2003). doi: 10.1109/TNS.2003.813129http://doi.org/10.1109/TNS.2003.813129
P. Francis, J.P. Colinge, and G. Berger, Temporal analysis of SEU in SOI/GAA SRAMs. IEEE Trans. Nucl. Sci. 42, 2127-2137 (1995). doi: 10.1109/23.489263http://doi.org/10.1109/23.489263
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution