1.Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
2.Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
Corresponding author. E-mail address: dwh203@mail.tsinghua.edu.cn
Scan for full text
Hong-Lin Chen, Jian-Chen Wang, Wu-Hua Duan, et al. Hydrodynamic characteristics of 30%TBP/kerosene-HNO3 solution system in an annular centrifugal contactor. [J]. Nuclear Science and Techniques 30(6):89(2019)
Hong-Lin Chen, Jian-Chen Wang, Wu-Hua Duan, et al. Hydrodynamic characteristics of 30%TBP/kerosene-HNO3 solution system in an annular centrifugal contactor. [J]. Nuclear Science and Techniques 30(6):89(2019) DOI: 10.1007/s41365-019-0615-1.
Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydrodynamic characteristics of the extraction systems in ACCs. The phase ratio (,R, = ,V,aq,/,V,org, A/O) and liquid hold-up volume (,V,) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the ,V, and ,R, (A/O) of a φ20 ACC by using a 30%TBP/kerosene-HNO ,3, solution system. The results showed that the operational and structural parameters had different effects on the ,V, and ,R, (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid hold-up volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.
Annular centrifugal contactorLiquid-fast-separation methodPhase ratio (A/O)Liquid hold-up volumeStructural parameterOperational parameter
S.T. Xiao, L. Li, G.A. Ye et al., An improvement in APOR process I-uranium/plutonium separation process. Nucl. Sci. Tech. 26, 040605 (2015). doi: 10.13538/j.1001-8042/nst.26.040605http://doi.org/10.13538/j.1001-8042/nst.26.040605
R.A. Leonard, G.J. Bernstein, A.A. Ziegler et al., Annular centrifugal contactors for solvent extraction. Sep. Sci. Technol. 15, 925-943 (1980). doi: 10.1080/01496398008076278http://doi.org/10.1080/01496398008076278
R.A. Leonard, D.B. Chamberlain, C. Conner, Centrifugal contactors for laboratory-scale solvent extraction tests. Sep. Sci. Technol. 32, 193-210 (1997). doi: 10.1080/01496399708003194http://doi.org/10.1080/01496399708003194
W.H. Duan, T.X. Sun, J.C. Wang, An industrial-scale annular centrifugal extractor for the TRPO Process. Nucl. Sci. Tech. 29, 46 (2018). doi: 10.1007/s41365-018-0395-zhttp://doi.org/10.1007/s41365-018-0395-z
W.H. Duan, M.M. Zhao, C.Q. Wang et al., Recent advances in the development and application of annular centrifugal contactors in the nuclear industry. Solvent Extr. Ion Exch. 32, 1-26 (2014). doi: 10.1080/07366299.2013.833741http://doi.org/10.1080/07366299.2013.833741
R.J. Taylor, C.R. Gregson, M.J. Carrott et al, Progress towards the full recovery of neptunium in an advanced PUREX process. Solvent Extr. Ion Exch. 31, 442-462 (2013). doi: 10.1080/07366299.2013.800438http://doi.org/10.1080/07366299.2013.800438
T.S. Rudisill, M.C. Thompson, Demonstration of the use of formohydroxamic acid in the UREX process. Sep. Sci. Technol. 50, 2823-2831 (2015). doi: 10.1080/01496395.2015.1085413http://doi.org/10.1080/01496395.2015.1085413
M. Carrott, K. Bell, J. Brown et al, Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr. Ion Exch. 32, 447-467 (2014). doi: 10.1080/07366299.2014.896580http://doi.org/10.1080/07366299.2014.896580
J.D. Law, T.G. Garn, D.H. Meikrantz et al., Pilot-scale TRUEX flowsheet testing for separation of actinides and lanthanides from used nuclear fuel. Sep. Sci. Technol. 45, 1769-1775 (2010). doi: 10.1080/01496395.2010.493832http://doi.org/10.1080/01496395.2010.493832
R. Malmbeck, O. Courson, G. Pagliosa et al., Partitioning of minor actinides from HLLW using the DIAMEX process. Part 2-"hot" continuous counter-current experiment. Radiochim. Acta 88, 865-871 (2000). doi: 10.1524/ract.2000.88.12.865http://doi.org/10.1524/ract.2000.88.12.865
G. Modolo, H. Asp, H. Vijgen et al., Demonstration of a TODGA-based continuous counter-current extraction process for the partitioning of actinides from a simulated PUREX raffinate, part II: centrifugal contactor runs. Solvent Extr. Ion Exch. 26, 62-76 (2008). doi: 10.1080/07366290701784175http://doi.org/10.1080/07366290701784175
Y. Morita, M. Kubota, J.P. Glatz et al., Actinide partitioning from HLW in a continuous DIDPA extraction process by means of centrifugal extractors. Solvent Extr. Ion Exch. 14, 385-400 (1996). doi: 10.1080/07366299608918346http://doi.org/10.1080/07366299608918346
X.M. He, Y.S. Yan, Q.R. Zhang et al. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process. Nucl. Sci. Tech. 9(3), 157-162 (1998).
W.H. Duan, J. Chen, J.C. Wang et al., Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste. J. Hazard. Mater. 278, 566-571 (2014). doi: 10.1016/j.jhazmat.2014.06.049http://doi.org/10.1016/j.jhazmat.2014.06.049
D.H. Meikrantz, T.G. Garn, J.D. Law et al., A centrifugal contactor design to facilitate remote replacement. Nucl. Technol. 173, 289-299 (2011). doi: 10.13182/NT11-A11662http://doi.org/10.13182/NT11-A11662
K. Mandal, S. Kumar, V. Vijayakumar et al., Hydrodynamic and mass transfer studies of 125 mm centrifugal extractor with 30% TBP/nitric acid system. Prog. Nucl. Energ. 85, 1-10 (2015). doi: 10.1016/j.pnucene.2015.05.005http://doi.org/10.1016/j.pnucene.2015.05.005
W.H. Duan, C.L. Song, Q.L. Wu et al., Development and performance of a new annular centrifugal contactor for semi-industrial scale. Sep. Sci. Technol. 40, 1871-1883 (2005). doi: 10.1081/SS-200064531http://doi.org/10.1081/SS-200064531
K.E. Wardle, Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options. Solvent Extr. Ion Exch. 33, 671-690 (2015). doi: 10.1080/07366299.2015.1082835http://doi.org/10.1080/07366299.2015.1082835
S.W. Li, W.H. Duan, J. Chen et al., CFD simulation of gas−liquid−liquid three-phase flow in an annular centrifugal contactor. Ind. Eng. Chem. Res. 51, 11245-11253 (2012). doi: 10.1021/ie300821thttp://doi.org/10.1021/ie300821t
S. Vedantam, K.E. Wardle, T.V. Tamhane et al., CFD simulation of annular centrifugal extractors. Int. J. Chem. Eng. Volume 2012, 759397 (2012). doi: 10.1155/2012/759397http://doi.org/10.1155/2012/759397
B.R. Zhao, A study on the interface radius and hold-up in an annular centrifugal extractor, M.D diss., Tsinghua University, P.R China, (1996). (in Chinese)
B. Schuur, G.N. Kraai, J.G.M. Winkelman et al., Hydrodynamic features of centrifugal contactor separators: experimental studies on liquid hold-up, residence time distribution, phase behavior and drop size distributions. Chem. Eng. Process. 55, 8-19 (2012). doi: 10.1016/j.cep.2012.02.008http://doi.org/10.1016/j.cep.2012.02.008
S.V.N. Ayyappa, M. Balamurugan, S. Kumar et al., Mass transfer and hydrodynamic studies in a 50 mm diameter centrifugal extractor. Chem. Eng. Process. 105, 30-37 (2016). doi: 10.1016/j.cep.2016.04.005http://doi.org/10.1016/j.cep.2016.04.005
W.H. Duan, S. Cao, Determination of the liquid hold-up volume and the interface radius of an annular centrifugal contactor using the liquid-fast-separation method. Chem. Eng. Commun. 203, 548-556 (2016). doi: 10.1080/00986445.2015.1048802http://doi.org/10.1080/00986445.2015.1048802
W.H. Duan, Q. Cheng, X.Z. Zhou et al., Development of a φ20 mm annular centrifugal contactor for the hot test of the total TRPO process. Prog. Nucl. Energ. 51, 313-318 (2009). doi: 10.1016/j.pnucene.2008.08.002http://doi.org/10.1016/j.pnucene.2008.08.002
R.A. Leonard, Solvent characterization using the dispersion number. Sep. Sci. Technol. 30(7-9), 1103-1122 (1995). doi: 10.1080/01496399508010335http://doi.org/10.1080/01496399508010335
K.E. Wardle, T.R. Allen, M.H. Anderson, Experimental study of the hydraulic operation of an annular centrifugal contactor with various mixing vane geometries. AIChE J. 56(8), 1960-1974 (2010). doi: 10.1002/aichttp://doi.org/10.1002/aic
K.E. Wardle, Summary Report on liquid-liquid contactor scoping experiments and validation test case definition, ANL-LTR-CERT-12-001, Argonne National Laboratory, USA, 2012.
G.J. Bernstein, D.E. Grosvenor, J.F. Lenc et al., Development and performance of a high-speed, long-rotor centrifugal contactor for application to reprocessing LMFBR Fuels. ANL-7968, Argonne National Laboratory, USA, 1973.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution