1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Corresponding author, guqiang@sinap.ac.cn
Scan for full text
Jun-Jie Guo, Qiang Gu, Meng Zhang, et al. Power losses caused by longitudinal HOMs in 1.3-GHz cryomodule of SHINE. [J]. Nuclear Science and Techniques 30(7):105(2019)
Jun-Jie Guo, Qiang Gu, Meng Zhang, et al. Power losses caused by longitudinal HOMs in 1.3-GHz cryomodule of SHINE. [J]. Nuclear Science and Techniques 30(7):105(2019) DOI: 10.1007/s41365-019-0628-9.
Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), the first hard XFEL based on a superconducting accelerated structure in China, is now under development at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences. In this paper, power losses caused by trapped longitudinal high-order modes (HOM), steady-state loss, and transient loss generated by untrapped HOMs in the 1.3-GHz SHINE cryomodule are investigated and calculated. The heat load generated by resistive wall wakefields is considered as well. Results are presented for power losses of every element in the 1.3-GHz cryomodule, caused by HOM excitation in the acceleration RF system of the continuous wave linac of SHINE.
Power lossHigher-order modes (HOMs)Resistive wall wakefieldsImpedanceSuperconducting cavities
Z.Y. Zhu, Z.T. Zhao, D. Wang et al., SCLF: AN 8-GEV CW SCRF LINAC-BASED X-RAY FEL FACILITY IN SHANGHAI, in Proceedings of the FEL2017, Santa Fe, NM, USA, (2017), p. 20. doi: 10.18429/JACoW-FEL2017-MOP055http://doi.org/10.18429/JACoW-FEL2017-MOP055
C. Feng, H.X. Deng, Review of fully coherent free-electron laser, Nucl. Sci. Tech. 29, 160 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
Z.T. Zhao, C. Feng, K. Q. Zhang, Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac, Nucl. Sci. Tech. 28, 117 (2017). doi: 10.1007/s41365-017-0258-zhttp://doi.org/10.1007/s41365-017-0258-z
Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the Shanghai soft X-ray free electron laser facility, Nucl. Sci. Tech. 28, 28 (2017). doi: 10.1007/s41365-017-0188-9http://doi.org/10.1007/s41365-017-0188-9
K. Bane, T. Raubenheimer, A. Romanenko et al., “Wakefields in the Superconducting RF Cavities of LCLS-II,” in Proceedings of LINAC2014, Geneva, Switzerland, THPP124, pp: 1147-1150
Z. Wang, C. Feng, D.Z. Huang et al., Nonlinear energy chirp compensation with corrugated structures, Nucl. Sci. Tech. 29, 175 (2018). doi: 10.1007/s41365-018-0512-zhttp://doi.org/10.1007/s41365-018-0512-z
B. Aune, R Bandelmann, D Bloess et al., “Superconducting TESLA cavities,” Phys. Rev. Spec. Top. Accel. Beams 3, 092001 (2000). doi: 10.1103/PhysRevSTAB.3.092001http://doi.org/10.1103/PhysRevSTAB.3.092001
I. Zagorodnov, T. Weiland, The short-range transverse wake fields in TESLA accelerating structure, in Proceedings of PAC03, Portland, Oregon, USA, RPPG034, pp. 3249-3251
A. Saini, A. Lunin, N. Solyak et al., RF Losses in 1.3GHzCryomodule of the LCLS II Superconduct-ing CW Linac, in Proceedings of LINAC2016, East Lansing, MI, USA, THPRC014, pp: 798-801
CST-Computer Simulation Technology. http://www.cst.comhttp://www.cst.com.
H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, Wiley, New York, 1998.
A. Sukhanov, A. Vostrikov, T. Khabiboulline et al., Resonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac. LCLS-II TN-15-06, March 2, 2015
T. Khabiboulline, A. Sukhanov, N. Solyak et al., RESONANCE EXCITATION OF LONGITUDINAL HIGH ORDER MODES IN PROJECT X LINAC, in Proceedings of IPAC2012, New Orleans, Louisiana, USA, WEPPC054, pp. 2336-2338
A. Sukhanov, A. Lunin, V. Yakovlev et al., High order modes in Project-X linac, Nucl. Instrum. Methods Phys Res. A 734 (2014) 9-22. doi: 10.1016/j.nima.2013.06.113http://doi.org/10.1016/j.nima.2013.06.113
N. Mildner, M. Dohlus, J. Sekutowicz et al., A BEAM LINE HOM ABSORBER FOR THE EUROPEAN XFEL LINAC. in Proceedings of the 12th International Workshop on RF Superconductivity, Cornell University, Ithaca, New York, USA, THP55, pp:593-595
D. Kostin, J. Sekutowicz, W.D. Moeller et al., HOM COUPLER DESIGN ADJUSTEMENT FOR CW OPERATION OF THE 1.3 GHZ 9-CELL TESLA TYPE SRF CAVITY. in Proceedings of SRF2013, Paris, France, THP059, pp:1051-1054
G. Stupakov, K. Bane, P. Emma et al., Resistive wall wakefields of short bunches at cryogenic temperatures[J].Phys. Rev. Spec. Top. Accel. Beams, 2015, 18(3): 034402. doi: 10.1103/PhysRevSTAB.18.034402http://doi.org/10.1103/PhysRevSTAB.18.034402
L. Palumbo, V.G. Vaccaro, M. Zobov et al., Wake fields and impedance[J].arXiv: Accelerator Physics, 1994: 331-390.
K. Bane, Short-Range Dipole Wakefields in Accelerating Structures for the NLC, SLAC-PUB-9663, LCC-0116, 2003.
Code ECHO, http://www.desy.de/~zagorhttp://www.desy.de/~zagor
A. Novokhatski, M. Timm, T. Weiland, Single Bunch Energy Spread in the TESLA Cryomodule, DESY TESLA-99-16, 1999.
M. Song, C. Feng, D. Huang et al., Wakefields studies for the SXFEL user facility, Nucl. Sci. Tech. 28, 90 (2017). doi: 10.1007/s41365-017-0242-7http://doi.org/10.1007/s41365-017-0242-7
K. Bane, C. Nantista, C. Adolphsen et al., Distribution of Heating from Untrapped HOM Radiation in the LCLS II Cryomodules, Physics Procedia, 2015:13-20. doi: 10.1016/j.phpro.2015.11.057http://doi.org/10.1016/j.phpro.2015.11.057
A. Lunin, A. Saini, N. Solyak et al., Generation and Absorption of the Untrapped Wakefield Radiation in the 3.9 GHz LCLS-II Cryomodule, LCLS-II TN-16-06, July 11, 2016
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution