1.Institute of Ancient Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
2.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Corresponding author, lhwang@sinap.ac.cn
Scan for full text
Mao-Lin Zhang, Li-Hua Wang, Li-Li Zhang, et al. Influence of copper element distribution and speciation on the color of Chinese under-glaze copper-red porcelain in the Yuan dynasty. [J]. Nuclear Science and Techniques 30(7):114(2019)
Mao-Lin Zhang, Li-Hua Wang, Li-Li Zhang, et al. Influence of copper element distribution and speciation on the color of Chinese under-glaze copper-red porcelain in the Yuan dynasty. [J]. Nuclear Science and Techniques 30(7):114(2019) DOI: 10.1007/s41365-019-0630-2.
A shard of Chinese under-glaze copper-red porcelain from the Yuan dynasty (AD 1271-1368) made in the Jingdezhen kiln was measured by synchrotron radiation induced X-ray fluorescence (XRF) mapping and X-ray absorption near-edge spectroscopy (XANES) to investigate the influence of copper element distribution and speciation on the color of porcelain. In black-colored region, copper accumulates at the interface between the body and glaze layers with metallic copper particles as the main speciation. In contrast, Cu is irregularly distributed in the red-colored region with multi-valence speciation. The differences in Cu distribution and speciation in black- and red-colored regions indicate that they are the main factors influencing the different colors of copper-red under-glaze porcelain.
Copper distribution and speciationChinese under-glaze copper-red porcelainSynchrotron techniques
J.Z. Li, History of Sicence and Technology of China (Ceramic Volume), Science Press, Beijing, 1998.
J.W. Mellor, Chemistry of Chinese copper-red galzes. Trans.Ceram.Soc. 1936, 35(8): 364-378.
R.F. Huang, X.Q. Chen, S.P. Chen et al., Submicroscopic structure of copper red glaze in Ming and Qing dynasties. China Ceramics, 1986, 03, 58-62.
P.A. Cuvelier, C. Andraud, D. Chaudanson et al., Copper red glazes: a coating with two families of particles. Appl. Phys. A-Mater, 2012, 106(4): 915-929. doi: 10.1007/s00339-011-6707-3http://doi.org/10.1007/s00339-011-6707-3.
W. Klysubun, Y. Thongkam, S. Pongkrapan et al., XAS study on copper red in ancient glass beads from Thailand. Anal. Bioanal. Chem., 2011, 399(9): 3033-3040. doi: 10.1007/s00216-010-4219-1http://doi.org/10.1007/s00216-010-4219-1
C. Maurizio, F. d'Acapito, M. Benfatto et al., Local coordination geometry around Cu+ and Cu2+ ions in silicate glasses: an X-ray absorption near edge structure investigation. Eur. Phys. J. B, 2000, 14, 211-216. doi: 10.1007/s100510050122http://doi.org/10.1007/s100510050122.
P. Colomban, A. Tournié, P. Ricciardi, Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J. Raman Spectrosc. 2009, 40, 1949-1955. doi: 10.1002/jrs.2345http://doi.org/10.1002/jrs.2345.
Ph. Sciau, L. Noé, Ph. Colomban, M et al nanoparticles in contemporary potters' master pieces: lustre and red “pigeon blood” potteries as models to understand the ancient pottery. Ceramics Int., 2016, 42, 15349-15357. doi: 10.1016/j.ceramint.2016.06.179http://doi.org/10.1016/j.ceramint.2016.06.179.
Ph. Colomban, The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Research, 2009, 8, 109-132. doi: JNanoR.8.109http://doi.org/JNanoR.8.109
Kingery, W.D., Vandiver, P.B., An Islamic lusterware from Kashan, Ceramic Masterpiecees, 1986, 111-121, The Free Press, New York.
A. Ram, S. N. Prasad, “Mechanism of Formation of Color in Copper Red Glass”; pp. 256-69 in Advances in Glass Technology, Part I. Plenum Press, New York, 1962.
S. Banerjee, A. Paul, Thermodynamics of the system Cu-O and ruby formation in borate glass. J. Am. Ceram. Soc., 1974, 57, 286-90. doi: 10.1111/j.1151-2916.1974.tb10902.xhttp://doi.org/10.1111/j.1151-2916.1974.tb10902.x.
M. Wakamatsu, N. Takeuchi, S. Ishida, Effect of heating and cooling atmosphere on colors of glaze and glass containing copper. J. Non-Cryst. Solids, 1986, 80, 412-21. doi: 10.1016/0022-3093(86)90425-4http://doi.org/10.1016/0022-3093(86)90425-4.
M. Wakamatsu, N. Takeuchi, H. Nagai et al., Chemical states of copper and tin in copper glazes fired under various atmosphere. J. Am. Ceram. Soc., 1989, 72, 16-19. doi: 10.1111/j.1151-2916.1989.tb05946.xhttp://doi.org/10.1111/j.1151-2916.1989.tb05946.x.
L. Guan, J. Zhu, C.S. Fan, Y.M. Yang et al., Micro SR-XRF analysis on underglaze copper red porcelain of Ming dynasty. Nucl. Tech., 2013, 36(7): 070103. doi: hjs.36.070103http://doi.org/hjs.36.070103. (in Chinese)
J. Zhu, H.P. Duan, Y.M. Yang et al., Colouration mechanism of underglaze copper-red decoration porcelain (AD 13th–14th century), China. J. Synchrotron Rad., 2014, 21, 751-755. doi: 10.1107/S1600577514009382http://doi.org/10.1107/S1600577514009382.
C. Lu, J.X. Jiang, C.Q. Xu et al., Coloration mechanism of Xuande sacrificial red porcelain from Guan kiln of Jingdezhen in China. Journal of University of Chinese Academy of Sciences, 2016, 33(3): 421-426. doi: 10.7523http://doi.org/10.7523.
M. C. C. Pinzani, A. Somogyi, A. S. Simionovici et al., Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced μ-X-ray fluorescence and μ-X-ray absorption spectroscopy. Environ. Sci. Technol., 2002, 36, 3165. doi: 10.1021/es010261ohttp://doi.org/10.1021/es010261o.
L. Vincze, A. Somogyi, J. Osán et al., Quantitative trace element analysis of individual fly ash particles by means of X-ray micro-fluorescence. Anal. Chem. 2002, 74, 1128. doi: 10.1021/ac010789bhttp://doi.org/10.1021/ac010789b.
M. C. Camerani, A. Somogyi, B. Vekemans et al., Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-μXRF spectroscopy. Anal. Chem. 2007, 79, 6496. doi: 10.1021/ac070206jhttp://doi.org/10.1021/ac070206j.
L. H. Wang, X. M. Lu, Y. Y. Huang, Determination of Zn distribution and speciation in basic oxygen furnace sludge by synchrotron radiation induced μ-XRF and μ-XANES microspectroscopy. X-ray Spectrom. 2013, 42, 423-428. doi: 10.1002/xrs.2494http://doi.org/10.1002/xrs.2494.
M. Zi, X. Wei, H. Yu et al. Stratified structure in ancient paints studied by synchrotron confocal micro-X-ray method. Nucl. Tech., 2015, 38:060101. doi: 10.11889/j.0253-3219.2015.hjs.38.060101http://doi.org/10.11889/j.0253-3219.2015.hjs.38.060101 (in Chinese)
M. Shang, T. Zhao, H. Bao et al. In situ XAFS characterization of bimetallic nanoparticle catalysts PtCo/C structure changes in the working conditions. Nucl. Tech., 2016, 39:060101. doi: 10.11889/j.0253-3219.2016.hjs.39.060101http://doi.org/10.11889/j.0253-3219.2016.hjs.39.060101 (in Chinese)
G.L. Chang, D.G. Wang,Y.Y. Zhang et al. ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. Nucl. Sci. Tech., 2016, 27: 108. doi: 10.1007/s41365-016-0122-6http://doi.org/10.1007/s41365-016-0122-6
Y. Y. Yang, Q.G. , S.-Q. Gu et al. Soller slits automatic focusing method for multi-element fluorescence detector. Nucl. Sci. Tech., 2016, 27(5): 115. doi: 10.1007/s41365-016-0105-7http://doi.org/10.1007/s41365-016-0105-7
P.Q. Duan, H.L. Bao, J. Li et al. In-situ high-energy-resolution X-ray absorption spectroscopy for UO2 oxidation at SSRF. Nucl. Sci. Tech., 2017, 28: 2. doi: 10.1007/s41365-016-0155-xhttp://doi.org/10.1007/s41365-016-0155-x
X.P. Sun, F.F. Sun, S.Q. Gu et al. Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy. Nucl. Sci.Tech., 2017, 28: 21. doi: 10.1007/s41365-016-0170-yhttp://doi.org/10.1007/s41365-016-0170-y
L. L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech., 2015, 26(6), 060101 . doi: 10.13538/j.1001-8042/nst.26.060101http://doi.org/10.13538/j.1001-8042/nst.26.060101.
Demeter: XAS Data Processing and Analysis. http://bruceravel.github.io/demeter/http://bruceravel.github.io/demeter/. Accessed April 24, 2019.
A.N. Shugar, Byzantine opaque red glass tesserae from Beith Shean, Israel. Archaeometry, 2000, 42(2): 375-384. doi: 10.1111/j.1475-4754.2000.tb00888.xhttp://doi.org/10.1111/j.1475-4754.2000.tb00888.x.
A. Santagostino Barbone, E. Gliozzo, F. D'Acapito et al., The SECTILIA panels of Faragola (ASCOLI SATRIANO, SOUTHERN Italy): A multi-analytical study of the red, orange and yellow glass slabs. Archaeometry, 2008, 50(3): 451-473. doi: 10.1111/j.1475-4754.2007.00341.xhttp://doi.org/10.1111/j.1475-4754.2007.00341.x.
R. H. Brill, N. D. Cahill, A red opaque glass from Sardis and some thoughts on red opaques in general. Journal of Glass Studies, 1988, 30, 16-27.
F.K. Zhang, Study on Changsha ware. Journal of the Chinese Ceramics Society, 1986, 14(3): 339-348. (in Chinese)
S. Quartieri, R. Arletti, Chapter 4.3, The use of X-ray absorption spectroscopy in Historical Glass Research, Modern Methods for analyzing Archaeological and Historical Glass, First Edition, Edited by Koen Janssens ©2013 John Wiley & Sons, Ltd.
A. Silvestri, S. Tonietto, F. D'Acapito et al., The role of copper on colour palaeo-Chiristian glass mosaic tesserae: An XAS study. J. Cult. Herit., 2012, 13, 137-144. doi: 10.1016/j.culher.2011.08.002http://doi.org/10.1016/j.culher.2011.08.002.
S. Padovani, C. Sada, P. Mazzoldi et al., Copper in glazes of Renaissance luster pottery: Nanoparticles, ions, and local environment. J. Appl. Phys., 2003, 93(12): 10058-10063. doi: 10.1063/1.1571965http://doi.org/10.1063/1.1571965.
G. Chen, S.Q. Chu, T.X. Sun et al., Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. J. Synchrotron Rad. 2017, 24, 1000-1005. doi: 10.1107/S1600577517010207http://doi.org/10.1107/S1600577517010207.
I. Nakai, C. Numako, H. Hosono et al., Origin of the red color of Satsuma Copper-ruby glass as determined by EXAFS and optical absorption spectroscopy. J. Am. Ceram. Soc., 1999, 82(3): 689-695. doi: j.1151-2916.1999.tb01818.xhttp://doi.org/j.1151-2916.1999.tb01818.x.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution