Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors
ACCELERATOR, RAY TECHNOLOGY AND APPLICATIONS|Updated:2021-02-01
|
Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors
Nuclear Science and TechniquesVol. 30, Issue 7, Article number: 107(2019)
Affiliations:
1.MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
Jia-Qi Chen, Qiu-Shi Huang, Run-Ze Qi, et al. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors. [J]. Nuclear Science and Techniques 30(7):107(2019)
DOI:
Jia-Qi Chen, Qiu-Shi Huang, Run-Ze Qi, et al. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors. [J]. Nuclear Science and Techniques 30(7):107(2019) DOI: 10.1007/s41365-019-0635-x.
Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors
摘要
Abstract
Gold films deposited by direct current magnetron sputtering are used for synchrotron radiation optics. In this study, the microstructure and surface roughness of gold films were investigated for the purpose of developing high reflectivity mirrors. The deposition process was first optimized. Films were fabricated at different sputtering powers (15, 40, 80, and 120 W) and characterized using grazing incidence X-ray reflectometry, X-ray diffraction, and atomic force microscopy. The results showed that all the films were highly textured, having a dominant Au (111) orientation, and the film deposited at 80 W had the lowest surface roughness. Subsequently, post-deposition annealing from 100 to 200 °C in a vacuum was performed on the films deposited at 80 W to investigate the effect of annealing on the microstructure and surface roughness of the films. The grain size, surface roughness, and their relationship were investigated as a function of annealing temperature. AFM and XRD results revealed that at annealing temperatures of 175 °C and below, microstructural change of the films was mainly manifested by the elimination of voids. At annealing temperatures higher than 175 °C, grain coalescence occurred in addition to the void elimination, causing the surface roughness to increase.
K.B. Becker, Synchrotron radiation mirrors for high intensity beam lines, Rev. Sci. Instrum. 63, 1420-1423(1992). doi: 10.1063/1.1143032http://doi.org/10.1063/1.1143032
V. Rehn, V.O. Jones, Vacuum ultraviolet (VUV) and soft X-ray mirrors for synchrotron radiation, Opt. Eng. 17 (1978). doi: 10.1117/12.7972270http://doi.org/10.1117/12.7972270
S. Sugita, A. Furuzawa, K. Ishibashi, et al., Measurement of reflectivity of x-ray mirror for soft x-ray telescope onboard ASTRO-H, Proc. SPIE. 8443 (2012). doi: 10.1117/12.926711http://doi.org/10.1117/12.926711
K. Raiber, A. Terfort, C. Benndorf, et al., Removal of self-assembled single layers of alkanethiolates on gold by plasma cleaning, Surf. Sci. 595, 56-63 (2005). doi: 10.1016/j.susc.2005.07.038http://doi.org/10.1016/j.susc.2005.07.038
A. Toyoshima, T. Kikuchi, H. Tanaka, et al., In situ removal of carbon contamination from a chromium-coated mirror: Ideal optics to suppress higher-order harmonics in the carbon K-edge region, J. Synchrotron Radiat. 22, 1359-1363 (2015). doi: 10.1107/S1600577515015040http://doi.org/10.1107/S1600577515015040
F. Tian, X. Li, Y. Wang, et al., Small angle X-ray scattering beamling at SSRF, Nucl. Sci. Tech. 26, 030101(2015). doi: 10.13538/j.1001-8042/nst.26.030101http://doi.org/10.13538/j.1001-8042/nst.26.030101
Bhuvana , G.U. Kulkarni, Optimizing growth conditions for electroless deposition of Au f-ilms on Si (111) substrates, Bull. Mater. Sci. 29, 505-511 (2006). doi: 10.1007/BF02914082http://doi.org/10.1007/BF02914082
K. Gall, N. West, K. Spark, et al., Creep of thin film Au on bimaterial Au/Si microcantilevers, Acta Mater. 52(8), 2133-2146 (2004). doi: 10.1016/j.actamat.2004.01.005http://doi.org/10.1016/j.actamat.2004.01.005
C.K. Malek, B. Kebabi, A. Charai, et al., Effect of thermal treatment on the mechanical and structural properties of gold thin films, J. Vac. Sci. Technol. B (USA). 9, 3329-3332 (1991). doi: 10.1116/1.585336http://doi.org/10.1116/1.585336
B.Š. Batič, T. Verbovšek, J. Šetina, Decomposition of thin Au films on flat and structured Si substrate by annealing, Vacuum. 138, 134-138 (2017). doi: 10.1016/j.vacuum.2016.12.006http://doi.org/10.1016/j.vacuum.2016.12.006
X. Zhang, X. Song, D. Zhang, Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films, Chinese Phys. B. 19, 086802 (2010). doi: 10.1088/1674-1056/19/8/086802http://doi.org/10.1088/1674-1056/19/8/086802
W. Tang, K. Xu, P. Wang, et al., Residual stress and crystal orientation in magnetron sputtering Au films, Mater. Lett. 57, 3101-3106 (2003). doi: 10.1016/s0167-577x(03)00004-1http://doi.org/10.1016/s0167-577x(03)00004-1
J. Wang, B. Zhang, Y. H. Xu, et al., Research on deposition rate of TiZrV/Pd film by DC magnetron sputtering method, Nucl. Sci. Tech, 28, 50 (2017). doi: 10.1007/s41365-017-0199-6http://doi.org/10.1007/s41365-017-0199-6
J.L. Plaza, S. Jacke, Y. Chen, et al., Annealing effects on the microstructure of sputtered gold layers on oxidized silicon investigated by scanning electron microscopy and scanning probe microscopy, Philos. Mag. 83, 1137-1142 (2003). doi: 10.1080/0141861031000072006http://doi.org/10.1080/0141861031000072006
Y. Huang, H. Qiu, F. Wang, et al., Effect of annealing on the characteristics of Au/Cr bilayer films grown on glass, User Model. User-Adapt. Interact. 71, 523-528 (2003). doi: 10.1016/S0042-207X(03)00093-9http://doi.org/10.1016/S0042-207X(03)00093-9
D. L. Windt. IMD Software for modeling the optical properties of multilayer films, American Institute of Physics Inc. 12, 360-370(1998). doi: 10.1063/1.168689http://doi.org/10.1063/1.168689
A. González-González, G.M. Alonzo-Medina, A.I. Oliva, et al., Morphology evolution of thermally annealed polycrystalline thin films, Phys. Rev. B - Condens. Matter Mater. Phys. 84 (2011). doi: 10.1103/PhysRevB.84.155450http://doi.org/10.1103/PhysRevB.84.155450
Y. Golan, L. Margulis, I. Rubinstein, Erratum to “vacuum-deposited gold films. I. Factors affecting the film morphology”, Surf. Sci. 273, 460-461(1992). doi: 10.1016/0039-6028(92)90188-Chttp://doi.org/10.1016/0039-6028(92)90188-C
S. Zhou, W. Wu, T. Shao, Effect of post deposition annealing on residual stress stability of gold films, Surf. Coatings Technol. 304, 222-227(2016). doi: 10.1016/j.surfcoat.2016.07.001http://doi.org/10.1016/j.surfcoat.2016.07.001
J.W.C. De Vries, Resistivity of thin Au films as a function of grain diameter and temperature, J. Phys. F Met. Phys. 18, 515(1988). doi: 10.1088/0305-4608/17/9/019http://doi.org/10.1088/0305-4608/17/9/019