1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, zhangzhe@pmo.ac.cn
Scan for full text
Yan Zhang, Jian-Hua Guo, Zhe Zhang, et al. Spectrometer of hard X-ray imager payload onboard the ASO-S mission. [J]. Nuclear Science and Techniques 30(8):128(2019)
Yan Zhang, Jian-Hua Guo, Zhe Zhang, et al. Spectrometer of hard X-ray imager payload onboard the ASO-S mission. [J]. Nuclear Science and Techniques 30(8):128(2019) DOI: 10.1007/s41365-019-0642-y.
A spaceborne hard X-ray spectrometer, composed of an array of 99 scintillation detectors and associated readout electronics, has been developed for the hard X-ray imager (HXI). The HXI is one of the three payloads onboard the Advanced Space-based Solar Observatory (ASO-S), which is scheduled to be launched in early 2022 as the first Chinese solar satellite. LaBr,3, scintillators and photomultiplier tubes with a super bialkali cathode are used to achieve an energy resolution better than 20% at 30 keV. Further, a new multi-channel charge-sensitive readout application-specific integrated circuit guarantees high-frequency data acquisition with low power consumption. This paper presents a detailed design of the spectrometer for the engineering model of the HXI, and discusses its noise and linearity performance.
Solar Radiation DetectionX-ray SpectrometerHard X-ray ImagerASO-S
W.Q. Gan, Q.L. Fan, Space solar physics in China. Chinese Journal of Space Science 38:662-664 (2018). doi: 10.11728/cjss2018.05.662http://doi.org/10.11728/cjss2018.05.662
W.Q. Gan, Y. Huang, Y.H. Yan, The past and future of space solar observations. Sci. China Ser. G 42:1274 (2012). doi: 10.1360/132012-658http://doi.org/10.1360/132012-658
W.Q. Gan, Y.Y. Deng, H. Li et al., ASO-S: Advanced Space based Solar Observatory. Proc. SPIE 9604:96040T (2015). doi: 10.1117/12.2189062http://doi.org/10.1117/12.2189062
T. Kosugi, K. Makishima, T. Murakami et al., The hard X-ray telescope (HXT) for the SOLAR-A mission. Sol. Phys 136:17 (1991). doi: 10.1007/BF00151693http://doi.org/10.1007/BF00151693
G.J. Hurford et al., The RHESSI Imaging Concept. In: R.P. Lin, A.O. Benz, editors. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Springer (2003). doi: 10.1007/978-94-017-3452-3_3http://doi.org/10.1007/978-94-017-3452-3_3
S. Krucker, M. Bednarzik, O. Grimm et al., The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs. Nucl. Instrum. Methods Phys. Res. A 824:626-629 (2016). doi: 10.1016/j.nima.2015.08.045http://doi.org/10.1016/j.nima.2015.08.045
S. Wang, J.H. Guo, Y. Zhang, et al., High-resolution pixelated CdZnTe detector prototype system for solar hard X-ray imager. Nucl. Sci. Tech. 30:42. doi: 10.1007/s41365-019-0571-9http://doi.org/10.1007/s41365-019-0571-9
E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk et al., Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators. Nucl. Instrum. Methods Phys. Res. A 486:254-258 (2002). doi: 10.1016/S0168-9002(02)00712-Xhttp://doi.org/10.1016/S0168-9002(02)00712-X
A. Owens, A.J.J. Bos, S. Brandenburg et al., Assessment of the radiation tolerance of LaBr3: Ce scintillators to solar proton events. Nucl. Instrum. Methods Phys. Res. A 572(2):785-793 (2007). doi: 10.1016/j.nima.2006.12.008http://doi.org/10.1016/j.nima.2006.12.008
R.P. Lin et al., The Reuven Ramaty high-energy solar spectroscopic imager In: R.P. Lin, A.O. Benz, editors. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Springer (2003). doi: 10.1007/978-94-017-3452-3_1http://doi.org/10.1007/978-94-017-3452-3_1
Z.Y. Zhang, Y.L. Zhang, J.N. Dong et al., Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE. Nucl. Instrum. Methods Phys. Res. A 780:21-26 (2015). doi: 10.1016/j.nima.2015.01.036http://doi.org/10.1016/j.nima.2015.01.036
Hamamatsu, Photomultiplier tubes basics and applications. http://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdfPMT_handbook_v3aE.pdfhttp://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdfPMT_handbook_v3aE.pdf
C.Q. Feng, D.L. Zhang, J.B. Zhang et al., The design of the readout electronics for the BGO calorimeter of DAMPE mission. IEEE Trans. Nucl. Sci 62:3117-3125 (2015). doi: 10.1109/TNS.2015.2479091http://doi.org/10.1109/TNS.2015.2479091
D. Meier, J. Ackermann, A. Olsen et al., SIPHRA 16-channel silicon photomultiplier readout ASIC. Proceedings of the ESA AMICSA & DSP, 6th International Workshop (2016).
X. Zhou, X.Q. Li, Y.N. Xie et al., Introduction to a calibration facility for hard X-ray detectors. Exp. Astron 38:433-441 (2014). doi: 10.1007/s10686-014-9393-2http://doi.org/10.1007/s10686-014-9393-2
M.S. Alekhin, J.T.M. De Haas, I.V. Khodyuk et al., Improvement of γ-ray energy resolution of LaBr3:Ce^3+ scintillation detectors by Sr^2+ and Ca^2+ co-doping. Appl. Phys. Lett 102:161915 (2013). doi: 10.1063/1.4803440http://doi.org/10.1063/1.4803440
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution