a.Nuclear Materials Authority, P.O. Box 530, Maadi, Cairo, Egypt
b.Chemistry Dept., Faculty of Science, Ain Shams University, Cairo, Egypt
Corresponding Author: mf.farid2008@yahoo.com
Scan for full text
Mohamed F. Cheira, Hamed I. Mira, Ahmed K. Sakr, et al. Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. [J]. Nuclear Science and Techniques 30(10):156(2019)
Mohamed F. Cheira, Hamed I. Mira, Ahmed K. Sakr, et al. Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. [J]. Nuclear Science and Techniques 30(10):156(2019) DOI: 10.1007/s41365-019-0674-3.
In this paper, waste clay was cured with ethyl acetate to obtain treated clay (TC), which was modified with gallic acid to obtain a low-cost sorbent that was characterized by EDX, SEM, and FTIR analysis. Uranium(VI) adsorption was achieved using the batch adsorption method on the TC and gallic acid modified treated clay (GMTC). The maximum uptakes of U(VI) on TC and GMTC were 37.2 and 193.0 mg/g, respectively. The U(VI) adsorption kinetics on the TC and GMTC sorbents were well-fitted by the pseudo-second-order mechanism, and the adsorption equilibrium followed the Langmuir model. The optimum parameters were applied to El Sela leach solution for uranium recovery.
Waste clayGallic acidModificationUranium adsorptionEquilibrium kinetics
K. Rajkumar, M. Muthukumar, R. Sivakumar, Noval approach for the treatment and recycle of wastewater from soya edible oil refinery industry–An economic perspective. Res. Conserv. Recycl. 54, 752-758 (2010). doi: 10.1016/j.resconrec.2009.12.005http://doi.org/10.1016/j.resconrec.2009.12.005
C. Weng, C. Tsai, S. Chu et al., Adsorption characteristics of copper (II) onto spent activated clay. J. Sep. Purif. Technol. 45, 187-197 (2007). doi: 10.1016/j.seppur.2006.09.009http://doi.org/10.1016/j.seppur.2006.09.009
J.L. Liao, W. Wen, B. Li et al., Interaction between uranium and humic acid (II): complexation, precipitation and migration behavior of U(VI) in the presence of humic substances. Nucl. Sci. Tech. 24, 030301 (2013). doi: 10.13538/j.1001-8042/nst.2013.03.010http://doi.org/10.13538/j.1001-8042/nst.2013.03.010
H. Wang, X.Z. Shao, Q. Tian et al., Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation. Nucl. Sci. Tech. 25, 030301 (2014). doi: 10.13538/j.1001-8042/nst.25.030301http://doi.org/10.13538/j.1001-8042/nst.25.030301
C.-Y. Xie, S.-P. Jing, Y. Wang et al., Adsorption of uranium (VI) onto amidoxime-functionalized ultrahigh molecular weight polyethylene fibers from aqueous solution. Nucl. Sci. Tech. 28, 94 (2017). doi: 10.1007/s41365-017-0251-6http://doi.org/10.1007/s41365-017-0251-6
X. Xu, X.-J. Ding, J.-X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). doi: 10.1007/s41365-019-0543-0http://doi.org/10.1007/s41365-019-0543-0
L. Xu, J.-T. Hu, H.-J. Ma et al., Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. Nucl. Sci. Tech. 28, 45 (2017). doi: 10.1007/s41365-017-0198-7http://doi.org/10.1007/s41365-017-0198-7
Ü. H. Kaynar, Ü. Hiçsönmez, S. Ç. Kaynar et al., Sorption of uranium(VI) from aqueous solutions by DEEA organovolcanic: isotherms, kinetic and thermodynamic studies. Nucl. Sci. Tech. 29, 30 (2018). doi: 10.1007/s41365-018-0359-3http://doi.org/10.1007/s41365-018-0359-3
M.M. Zareh, A. Aldaher, A.E.M. Hussein et al., Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J. Radioanal. Nucl. Chem. 295, 1153-115 (2013). https://link.springer.com/article/10.1007/s10967-012-2234-8https://link.springer.com/article/10.1007/s10967-012-2234-8
D. Humelnicu, E. Popovici, C. Mita, Study on the retention of uranyl ion on modified clays with titanium oxide. J. Radioanal. Nucl. Chem. 279, 131-136 (2009). https://link.springer.com/article/10.1007/s10967-007-7194-zhttps://link.springer.com/article/10.1007/s10967-007-7194-z
G. Wang, X. Wang, X. Chai et al., Adsorption of U(VI) from aqueous solution on calcined and acid activated kaolin. Appl. Clay Sci. 47, 448-451 (2010). doi: 10.1016/j.clay.2009.11.003http://doi.org/10.1016/j.clay.2009.11.003
M. Majdan, S. Pikus, A. Gajwaik et al., Characterization of U(VI) sorption by organobentonite. Appl. Surf. Sci. 256, 5416-5421 (2010). doi: 10.1016/j.apsusc.2009.12.123http://doi.org/10.1016/j.apsusc.2009.12.123
S. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method. J. Nucl. Mater. 406, 285-292 (2010). doi: 10.1016/j.jnucmat.2010.08.024http://doi.org/10.1016/j.jnucmat.2010.08.024
Y. Sun, S. Yang, G. Sheng et al., Comparison of U(VI) removal from contaminated ground water by nanoporous alumina and non‒nanoporous alumina. Separ. Purif. Technol. 83, 196-203 (2011). doi: 10.1016/j.seppur.2011.09.050http://doi.org/10.1016/j.seppur.2011.09.050
C. Tournassat, R.M. Tinnacher, S. Grangeon et al., Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochim. Cosmochim. Acta 220, 291-308 (2018). doi: 10.1016/j.gca.2017.09.049http://doi.org/10.1016/j.gca.2017.09.049
B. Campos, J. Aguilar-Carrillo, M. Algarra et al., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Appl. Clay Sci. 85, 53-63 (2013). doi: 10.1016/j.clay.2013.08.046http://doi.org/10.1016/j.clay.2013.08.046
M.M. Fernandes, B. Baeyens, R. Dähn et al., U(VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study. Geochim. Cosmochim. Acta 93, 262-277 (2012). doi: 10.1016/j.gca.2012.04.017http://doi.org/10.1016/j.gca.2012.04.017
S. Sachs, G. Bernhard, Sorption of U(VI) onto an artificial humic substance-kaolinite-associate. Chemosphere 72, 1441-1447 (2008). doi: 10.1016/j.chemosphere.2008.05.027http://doi.org/10.1016/j.chemosphere.2008.05.027
C. Joseph, M. Stockmann, K. Schmeide et al., Sorption of U(VI) onto Opalinus clay: Effects of pH and humic acid. Appl. Geochemistry 36, 104-117 (2013). doi: 10.1016/j.apgeochem.2013.06.016http://doi.org/10.1016/j.apgeochem.2013.06.016
D.L. Guerraa, V.L. Leidensa, R.R. Vianaa et al., Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions. J. Hazard. Mater. 180, 683-692 (2010). doi: 10.1016/j.jhazmat.2010.04.092http://doi.org/10.1016/j.jhazmat.2010.04.092
S.K. Loh, K.Y. Cheong, J. Salimon, Surface-active physicochemical characteristics of spent bleaching earth on soil-plant interaction and water-nutrient uptake: A review. Appl. Clay Sci. 140, 59-65 (2017). doi: 10.1016/j.clay.2017.01.024http://doi.org/10.1016/j.clay.2017.01.024
J. Tang, B. Mu, L. Zong et al., Facile and green fabrication of magnetically recyclable carboxyl - functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment. Chem. Eng. J. 322, 102-114 (2017). doi: 10.1016/j.cej.2017.03.116http://doi.org/10.1016/j.cej.2017.03.116
W.T. Tsai, H.P. Chen, M.F. Hsieh, Regeneration of spent bleaching earth by pyrolysis in a rotary furnace. J. Anal. App. Pyrol. 63, 157-17 (2002). doi: 10.1016/S0165-2370(01)00150-4http://doi.org/10.1016/S0165-2370(01)00150-4
J. Madejova, FTIR techniques in clay mineral studies. Viber. Spectrosc. 31, 1-10 (2002). doi: 10.1016/S0924-2031(02)00065-6http://doi.org/10.1016/S0924-2031(02)00065-6
M.F. Cheira, B.M. Atia, M.N. Kouraim, Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: kinetic, equilibrium and thermodynamic studies. J. Radia. Res. Appl. Sci. 10, 307-319 (2017). doi: 10.1016/j.jrras.2017.07.005http://doi.org/10.1016/j.jrras.2017.07.005
S.E. Crawford, S. Lofts, K. Liber, The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Environm. Poll. 220, 873-881 (2017). doi: 10.1016/j.envpol.2016.10.071http://doi.org/10.1016/j.envpol.2016.10.071
A.M.L. Kraepiel, K. Keller, F.M.M. Morel, A model for metal adsorption on montmorillonite. J. Colloid Interf. Sci. 210, 43-54 (1999). doi: 10.1006/jcis.1998.5947http://doi.org/10.1006/jcis.1998.5947
M.F. Cheira, Synthesis of pyridylazo resorcinol–functionalized Amberlite XAD-16 and its characteristics for uranium recovery. J. Environ. Chem. Eng. 3, 642-652 (2015). doi: 10.1016/j.jece.2015.02.003http://doi.org/10.1016/j.jece.2015.02.003
Y.S. Ho, G. Mackay, Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451-465 (1999). doi: 10.1016/S0032-9592(98)00112-5http://doi.org/10.1016/S0032-9592(98)00112-5
F. Wu, R. Tseng, R. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366-373 (2009). doi: 10.1016/j.cej.2009.01.014http://doi.org/10.1016/j.cej.2009.01.014
F. Wu, R. Tseng, R. Juangcd, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1-8 (2009). doi: 10.1016/j.cej.2009.04.042http://doi.org/10.1016/j.cej.2009.04.042
P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liquids 225, 137-146 (2017). doi: 10.1016/j.molliq.2016.11.058http://doi.org/10.1016/j.molliq.2016.11.058
N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms. J. Chemistry 2017, 1-11 (2017). doi: 10.1155/2017/3039817http://doi.org/10.1155/2017/3039817
M.M. Dubinin, The potential theory of adsorption of gases and vapours for adsorbents with energetically nonuniform surfaces. Chem. Reviews 60, 235-241 (1960). doi: 10.1021/cr60204a006http://doi.org/10.1021/cr60204a006
X. Zhang, C. Jiao, J. Wang et al., Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: Kinetic and thermodynamic investigation. Chem. Eng. J. 198-199, 412-419 (2012). doi: 10.1016/j.cej.2012.05.090http://doi.org/10.1016/j.cej.2012.05.090
H. Heshmati, M. Torab-Mostaedi, H.G. Gilani et al., Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desal. Wat. Treatment 55, 1076-1087 (2014). doi: 10.1080/19443994.2014.922495http://doi.org/10.1080/19443994.2014.922495
Y.M. Khawassek, Production of commercial uranium concentrate from El-Sela shear zone mineralized ore material, southeastern desert - Egypt, at Inshas pilot plant unit. Nucl. Sci. Scientific J. 3, 169-179 (2014). https://inis.iaea.org/search/search.aspx?orig_q=RN:46119852https://inis.iaea.org/search/search.aspx?orig_q=RN:46119852
W.A. Deer, R.A. Howie, J. Zussman, An Introduction to The Rock-Forming Minerals. 3ed Mineralogical Society of Great Britain and Ireland (2013). doi: 10.1180/DHZhttp://doi.org/10.1180/DHZ
A.K. Sakr, S.A. Mohamed, H.I. Mira, et al., Successive leaching of uranium and rare earth elements from El Sela mineralization. J. Scientific Eng. Res. 5, 95-111 (2018). http://jsaer.com/archive/volume-5-issue-9-2018/http://jsaer.com/archive/volume-5-issue-9-2018/
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution