1.University of Chinese Academy of Sciences, Beijing 100049, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
Corresponding author, gezhuang@impcas.ac.cn
Scan for full text
Jun-Hao Liu, Zhuang Ge, Qian Wang, et al. Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. [J]. Nuclear Science and Techniques 30(10):152(2019)
Jun-Hao Liu, Zhuang Ge, Qian Wang, et al. Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. [J]. Nuclear Science and Techniques 30(10):152(2019) DOI: 10.1007/s41365-019-0676-1.
A foil–microchannel plate (MCP) detector, which uses electrostatic lenses and possesses both good position and timing resolutions, has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China. Characterized by low energy loss and good performances of timing and position measurements, it would be located at focal planes in fragment separator HFRS for position monitoring, beam turning,Bρ, measurement, and trajectory reconstruction. Moreover, it will benefit the building-up of a magnetic-rigidity–energy-loss–time-of-flight (,Bρ,–ΔE–TOF) method at HFRS for high-precision in-flight particle identification (PID) of radioactive isotope (RI) beams on an event-by-event basis. Most importantly, the detector can be utilized for in-ring TOF and position measurements, beam-line TOF measurements at two achromatic foci, and position measurements at a dispersive focus of HFRS, thus making it possible to use two complementary mass measurement methods (isochronous mass spectrometry (IMS) at the storage ring SRing and magnetic-rigidity–time-of-flight (,Bρ,-TOF) at the beam-line HFRS) in one single experimental run.
Microchannel plateElectrostatic lensesDetectorPosition-sensitiveTime-of-flightMass measurementsHIAF
D. Lunney, J. M. Pearson, and C. Thibault, Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021-1082 (2003). doi: 10.1103/RevModPhys.75.1021http://doi.org/10.1103/RevModPhys.75.1021
K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rev. 425, 1 (2006). doi: 10.1016/j.physrep.2005.10.011http://doi.org/10.1016/j.physrep.2005.10.011
M. Z. Sun, X. H. Zhou, M. Wang, et al., Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou Front. Phys. 13, 132112 (2018). doi: 10.1007/s11467-018-0844-5http://doi.org/10.1007/s11467-018-0844-5
GSI home page, https://www.gsi.de/https://www.gsi.de/. Accessed 25 May 2019
IMP home page, http://english.imp.cas.cn/http://english.imp.cas.cn/. Accessed 25 May 2019
RIKEN home page, http://www.riken.jp/en/http://www.riken.jp/en/. Accessed 25 May 2019
J. W. Xia, W. L. Zhan, B. W. Wei, et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instr. Meth. in Phys. Res. A 488, 11-25 (2002). doi: 10.1016/S0168-9002(02)00475-8http://doi.org/10.1016/S0168-9002(02)00475-8
Y. H. Zhang, Y. A. Litvinov, T. Uesaka, et al., Storage ring mass spectrometry for nuclear structure and astrophysics research. Phys. Scr. 91, 073002 (2016). doi: 10.1088/0031-8949/91/7/073002http://doi.org/10.1088/0031-8949/91/7/073002
X. L. Tu, H. S. Xu, M. Wang, et al., Direct mass measurements of short- lived A = 2Z - 1 nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rp process. Phys. Rev. Lett. 106, 112501 (2011). doi: 10.1103/PhysRevLett.106.112501http://doi.org/10.1103/PhysRevLett.106.112501
X. L. Yan, H. S. Xu, Yu. A. Litvinov, et al., Mass measurement of 45Cr and its impact on the Ca-Sc cycle in X-ray bursts. Astrophys. J. Letters 766, L8 (2013). doi: 10.1088/2041-8205/766/1/l8http://doi.org/10.1088/2041-8205/766/1/l8
Y. M. Xing, K. A. Li, Y. H. Zhang, et al., Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes. Phys. Lett. B 781, 358 (2018). doi: 10.1016/j.physletb.2018.04.009http://doi.org/10.1016/j.physletb.2018.04.009
B. Wu, J. C. Yang, J. W. Xia, et al., The design of the Spectrometer Ring at the HIAF Nucl. Instr. Meth. in Phys. Res. Sect. B 408, 169 (2017). doi: 10.1016/j.nima.2017.08.017http://doi.org/10.1016/j.nima.2017.08.017
B. Mei, X. L. Tu, M. Wang, et al., A high performance time-of-flight detector applied to isochronous mass measurement at CSRe. Nucl. Instr. Meth. in Phys. Res. Sect. A 624, 109 (2010). doi: 10.1016/j.nima.2010.09.001http://doi.org/10.1016/j.nima.2010.09.001
W. Zhang, X. L. Tu, M. Wang, et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe. Nucl. Instr. Meth. in Phys. Res. Sect. A 756, 1 (2014). doi: 10.1016/j.nima.2014.04.051http://doi.org/10.1016/j.nima.2014.04.051
J. L. Wiza, Microchanel plate detectors. Nucl. Instr. Meth. in Phys. Res. 162, 587-601 (1979). doi: 10.1016/0029-554X(79)90734-1http://doi.org/10.1016/0029-554X(79)90734-1
K. F. Natalia, F. Benjamin, D. Marcel,et al., Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility. Nucl. Instr. Meth. in Phys. Res. A 821, 160-168 (2016). doi: 10.1016/j.nima.2016.03.036http://doi.org/10.1016/j.nima.2016.03.036
D. Nagae, Y. Abe, S. Okada, et al., Time-of-flight detector applied to mass measurements in Rare-RI Ring. Nucl. Instr. Meth. in Phys. Res. B 317, 640-643 (2013). doi: 10.1016/j.nimb.2013.08.053http://doi.org/10.1016/j.nimb.2013.08.053
S. Suzuki, A. Ozawa, T. Moriguchi et al., in INPC2016, The 26th International Nuclear Physics Conference 11-16 September, 2016 Adelaide, Australia: Performance of Time-Of-Flight Detector and Demonstration of Completely New Position Detector for Mass Measurements with the Rare-RI Ring. Proc. Sci. 281, 111 (2017), http://pos.sissa.it/http://pos.sissa.it/. Accessed 25 May 2019
Z. Ge, the Rare-RI Ring Collaboration: RIKEN Accelerator Progress Report 50, 187 (2017), https://www.nishina.riken.jp/researcher/APR/APR050https://www.nishina.riken.jp/researcher/APR/APR050. Accessed 25 May 2019
Z. Meisel and S. George, Time-of-flight mass spectrometry of very exotic systems. Int. J. Mass Spectrom. 145, 349-350 (2013). doi: 10.1016/j.ijms.2013.03.022http://doi.org/10.1016/j.ijms.2013.03.022
W. Starzecki, A. M. Stefanini, S. Lunardi, et al., A compact time-zero detector for mass identification of heavy ions. Nucl. Instr. Meth. 193, 71-74, (1982). doi: 10.1016/0029-554X(82)90242-7http://doi.org/10.1016/0029-554X(82)90242-7
K. Kosev, N. Nankov, M. Friedrich, et al., A high-resolution time-of-flight spectrometer with tracking capabilities for fission fragments and beams of exotic nuclei. Nucl. Instr. Meth. in Phys. Res. A 594, 178-183 (2008). doi: 10.1016/j.nima.2008.06.014http://doi.org/10.1016/j.nima.2008.06.014
Photonis home page, http://www.photonis.com/http://www.photonis.com/. Accessed 25 May 2019
RoentDek GmbH, http://www.roentdek.comhttp://www.roentdek.com. Accessed 25 May 2019
H. Kumagai, A. Ozawa, N. Fukuda, et al., Delay-line PPAC for high-energy light ions Nucl. Instrum. Meth. A 470, 562-570 (2001). doi: 10.1016/S0168-9002(01)00804-Xhttp://doi.org/10.1016/S0168-9002(01)00804-X
Z. Ge, et al., to be submitted.
G. Charpak, F. Sauli, Multiwire proportional chambers and drift chambers. Nucl. Instrum. Methods 162, 405 (1979). doi: 10.1016/0029-554X(79)90726-2http://doi.org/10.1016/0029-554X(79)90726-2
D.A. Dahl, SIMION 3D, http://www.simion.comhttp://www.simion.com. Accessed 25 May 2019
H. Rothard, K. Kroneberger, M. Schosnig, et al., Secondary-electron velocity spectra and angular distributions from ions penetrating thin solids. Nucl. Instrum. Methods. B 48, 616-620 (1990). doi: 10.1016/0029-554X(82)90242-7http://doi.org/10.1016/0029-554X(82)90242-7
Bethe formula, https://en.wikipedia.org/wiki/Bethe_formulahttps://en.wikipedia.org/wiki/Bethe_formula. Accessed 25 May 2019
H. Bethe, Quantenmechanik der Ein- und Zwei-Elektronenprobleme. Handb. Phys. 24, 273 (1933). doi: 10.1007/978-3-642-52619-0_3http://doi.org/10.1007/978-3-642-52619-0_3
H. Bethe, Bremsformel für Elektronen relativistischer Geschwindigkeit. Z. Phys. 76, 293 (1932). doi: 10.1007/BF01342532http://doi.org/10.1007/BF01342532
X. Chen, L. N. Shen, J. C. Yang, et al., Separation performance research of superconducting fragment separator, High Power Laser and Particle Beams 29, 056008 (2017). doi: 10.11884/HPLPB201729.160552http://doi.org/10.11884/HPLPB201729.160552 (in Chinese)
P. Shuai, X. Xing, Y. H. Zhang, et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors. Nucl. Instr. and Meth. in Phys. Res. B 376, 311-315 (2016). doi: 10.1016/j.nimb.2016.02.006http://doi.org/10.1016/j.nimb.2016.02.006
X. Chen, M. S. Sanjari, J. Piotrowski, et al., Accuracy improvement in the isochronous mass measurement using a cavity doublet. Hyperfine Interact. 235 51 (2015). doi: 10.1007/s10751-015-1183-3http://doi.org/10.1007/s10751-015-1183-3
H. Geissel, Y.A. Litvinov, Precision experiments with relativistic exotic nuclei at GSI. J. Phys. G: Nucl. Part. Phys. 31, S1779 (2005). doi: 10.1016/S0146-6410(99)00055-1http://doi.org/10.1016/S0146-6410(99)00055-1
A. Ozawa, T. Uesaka and M. Wakasugi, the Rare-RI Ring Collaboration, The rare-RI ring. Prog. Theor. Exp. Phy. 2012, 03C009 (2012). doi: 10.1093/ptep/pts060http://doi.org/10.1093/ptep/pts060
H. J. Kluge, Penning trap mass spectrometry of radionuclides. Int. J. Mass Spectrom. 107, 349-350 (2013). doi: 10.1016/j.ijms.2013.04.017http://doi.org/10.1016/j.ijms.2013.04.017
L. Bianchi, B. Fernandez, J. Gastebois, et al., SPEG: An energy loss spectrometer for GANIL. Nucl. Instr. Meth. in Phys. Res. A 276(3), 509-520 (1989). doi: 10.1016/0168-9002(89)90577-9http://doi.org/10.1016/0168-9002(89)90577-9
J. M. Wouters, D. J. Vieira, H. Wollnik,et al., Optical design of the tofi (time-of-flight isochronous) spectrometer for mass measurements of exotic nuclei. Nucl. Instr. Meth. in Phys. Res. A 240(1), 77-90 (1985). doi: 10.1016/0168-9002(85)90390-0http://doi.org/10.1016/0168-9002(85)90390-0
R. N. Wolf, F. Wienholtza, D. Atanasov, et al., ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 349-350(0), 123-133 (2013). doi: 10.1016/j.ijms.2013.03.020http://doi.org/10.1016/j.ijms.2013.03.020
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution