Cong Liu, Xiao-Li Hu, Bin Zhang, et al. Numerical study of scattering legendre moments and effect of anisotropic scattering on SN shielding calculation. [J]. Nuclear Science and Techniques 30(11):161(2019)
DOI:
Cong Liu, Xiao-Li Hu, Bin Zhang, et al. Numerical study of scattering legendre moments and effect of anisotropic scattering on SN shielding calculation. [J]. Nuclear Science and Techniques 30(11):161(2019) DOI: 10.1007/s41365-019-0695-y.
Numerical study of scattering legendre moments and effect of anisotropic scattering on SN shielding calculation
摘要
Abstract
In neutron and photon transport problems, anisotropic scattering is of great importance for the particle flux, especially when the angular flux has a strong forward peak in shielding analyses. The conventional Legendre expansion is widely-used in discrete ordinates transport codes because of algebraic simplifications with spherical harmonics for the scattering source. However, negative cross-sections caused by the finitely truncated expansion may give rise to a negative source and flux. A simple method is adopted, based on integrating functions of scattering moments, to evaluate anisotropy and convergence of expanded functions. A series of problems were designed with angular fluxes of different anisotropy, and numerical simulations were performed using the ARES transport code to study different treatments and algorithms for scattering. Results show that the diagonal transport approximation is more stable, and obtains a similar accuracy with the extended approximation. A conservative fix-up for the negative source could ensure particle balance and improve computational accuracy significantly for photon transport. The effect of anisotropic scattering is problem-dependent, and no distinct differences among various methods are observed for volume source problems with a continuous energy source. For beam source problems, flux results are sensitive to negative scattering functions, and strictly non-negative cross-sections need to be implemented.
G.I. Bell, S. Glasstone, Nuclear reactor theory, US Atomic Energy Commission, Washington DC, 1970.
US Nuclear Regulatory Commission. Regulatory Guide 1.190: Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2001
J.P. Odom, J.K. Shultis, Anisotropic neutron transport without Legendre expansions, Nucl. Sci. Eng. 59: 278-281 (1976). DOI: 10.13182/NSE76-5http://doi.org/10.13182/NSE76-5
J.A. Dahl, B.D. Ganapol, J.E. Morel, Positive Scattering Cross Sections Using Constrained Least Squares, in: Proceedings of ANS Mathematics and Computation Topical Meeting, 1999.
J.M. DelGrande, K.A. Mathews, Nonnegative anisotropic group cross sections: A hybrid Monte Carlo-discrete elements-discrete ordinates approach. Nucl. Sci. Eng. 139: 33-46 (2001). DOI: 10.13182/NSE00-69http://doi.org/10.13182/NSE00-69
D.W. Gerts, K.A. Mathews, Non-negative Anisotropic Piecewise-Average Multigroup Cross Sections, in: Proceedings of International Conference on Mathematics, Computational Methods & Reactor Physics, Gatlinburg, Tennessee. 2003.
J.W. Kim, N.Z. Cho, An efficient deterministic method for generating non-negative scattering cross-sections, Ann. Nucl. Energy 34: 967-976 (2007). DOI: 10.1016/j.anucene.2007.04.014http://doi.org/10.1016/j.anucene.2007.04.014
G.I. Bell, G.E. Hansen, H.A. Sandmeier, Multitable treatments of anisotropic scattering in SN multigroup transport calculations, Nucl. Sci. Eng. 28: 376-383 (1967). DOI: 10.13182/NSE67-2http://doi.org/10.13182/NSE67-2
H. Brockmann, Treatment of anisotropic scattering in numerical neutron transport theory, Nucl. Sci. Eng, 77: 377-414 (1981). DOI: 10.13182/NSE81-3http://doi.org/10.13182/NSE81-3
M.B. Emmett, R.L. Childs, W.A. Rhoades, Repair for scattering expansion truncation errors in transport calculations, Oak Ridge Natl. Lab., 1980. No. CONF-791103-100.
J.E. Morel, A hybrid collocation-Galerkin-SN method for solving the Boltzmann transport equation, Nucl. Sci. Eng. 101: 72-87(1989). DOI: 10.13182/NSE89-4http://doi.org/10.13182/NSE89-4
R. Sanchez, J. Ragusa, On the construction of Galerkin angular quadratures, Nucl. Sci. Eng. 169 (2011): 133-154. DOI: 10.13182/NSE10-31http://doi.org/10.13182/NSE10-31
T. Ushio, T. Takeda, M. Mori, Neutron anisotropic scattering effect in heterogeneous cell calculations of light water reactors, J. Nucl. Sci. Technol. 40: 464-480 (2003). DOI: 10.1080/18811248.2003.9715381http://doi.org/10.1080/18811248.2003.9715381
T. Takeda, T. Okamoto, A. Inoue, et al., Effect of anisotropic scattering in neutronics analysis of BWR assembly, Ann. Nucl. Energy 33: 1315-1321 (2006). DOI: 10.1016/j.anucene.2006.08.008http://doi.org/10.1016/j.anucene.2006.08.008
A. Yamamoto, Y. Kitamura, Y. Yamane, Simplified treatments of anisotropic scattering in LWR core calculations, J. Nucl. Sci. Technol. 45: 217-229 (2008). doi: 10.1080/18811248.2008.9711430http://doi.org/10.1080/18811248.2008.9711430
S. Choi, K. Smith, H.C. Lee, et al., Impact of inflow transport approximation on light water reactor analysis, J. Comput. Phys. 299: 352-373 (2015). DOI: 10.1016/j.jcp.2015.07.005http://doi.org/10.1016/j.jcp.2015.07.005
E. Oblow, K. Kin, H Goldstein, et al., Effects of highly anisotropic scattering on monoenergetic neutron transport at deep penetrations, Nucl. Sci. Eng. 54: 72-84 (1974).
D.C. Sahni, R.G. Tureci, Discrete eigenvalues of Case spectrum with anisotropic scattering, Nucl. Sci. Eng. 191: 1-15(2018). DOI: 10.1080/00295639.2018.1463748http://doi.org/10.1080/00295639.2018.1463748
R.E. Macfarlane, D.W. Muir, R.M. Boicourt, et al., The NJOY Nuclear Data Processing System Version 2016, Los Alamos Natl. Lab., 2017. No. LA-UR-17-20093.
Y. Chen, B. Zhang, L. Zhang et al., ARES: a parallel discrete ordinates transport code for radiation shielding applications and reactor physics analysis, Science and Technology of Nuclear Installations, 2017, Article ID 2596727. doi: 10.1155/2017/2596727http://doi.org/10.1155/2017/2596727
L. Zhang, B. Zhang, C. Liu, et al., Evaluation of PWR pressure vessel fast neutron fluence benchmarks from NUREG/CR-6115 with ARES transport code, Nuclear Technology and Radiation Protection 32: 204-210 (2017).
B. Zhang, L. Zhang, C. Liu, et al., Goal-Oriented regional angular adaptive algorithm for the SN equations, Nucl. Sci. Eng. 189: 120-134 (2018). DOI: 10.1080/00295639.2017.1394085http://doi.org/10.1080/00295639.2017.1394085
R.E. MacFarlane, TRANSX 2: A code for interfacing MATXS cross-section libraries to nuclear transport codes, Los Alamos Natl. Lab., 1992.
B.G. Petrovic, A. Haghighat. Effects of SN method numerics on pressure vessel neutron fluence calculations. Nucl. Sci. Eng. 122: 167-193 (1996). DOI: 10.13182/NSE96-3http://doi.org/10.13182/NSE96-3