1.Laboratory of Energy and Smart Systems, University of Khemis Miliana Route de Theniet El Had, 44225 Ain Defla, Algeria
2.Dosing, Analysis and Characterization in High Resolution Laboratory, Physics Department, Faculty of Sciences, Ferhat ABBAS University, 19000 Sétif-1, Algeria
Corresponding author, d.benzaid@univ-dbkm.dz
Scan for full text
Djelloul Benzaid, Salaheddine Bentridi, Abdelkader Kerraci, et al. Bethe-Weizsäcker semi-empirical mass formula parameters 2019 update based on AME2016. [J]. Nuclear Science and Techniques 31(1):9(2020)
Djelloul Benzaid, Salaheddine Bentridi, Abdelkader Kerraci, et al. Bethe-Weizsäcker semi-empirical mass formula parameters 2019 update based on AME2016. [J]. Nuclear Science and Techniques 31(1):9(2020) DOI: 10.1007/s41365-019-0718-8.
In the present work, the classical Bethe-Weizsäcker (BW) mass formula with five energy terms is revisited and updated. We use the least-squares adjustments on the binding energy of 2497 different nuclides from the last update of the atomic mass evaluation, AME2016 published in March 2017, to provide a new set of energy coefficients of the mass formula. The obtained set of formula coefficients allowed us to reproduce most of the experimental values of the binding energies for each nucleus with ,A, 50. The comparison between the binding energies provided with updated mass formula and those of AME2016 on one hand, and those of previous works, on the other hand, yield relative errors that oscillate between less than 0.05% and 1.5
Binding energy of atomic nucleiMass formula parametersAME2016Least-squares adjustments
C.F. von Weizsäcker, Weizsäcker, Zur theorie der kernmassen. Zeitschrift für Physik A Hadrons and Nuclei 96, 431-458 (1935). https://doi.org/10.1007/BF01337700https://doi.org/10.1007/BF01337700
R.D. Evans, The Atomic Nucleus (McGraw-Hill, Bombay New Delhi, 1955)
D. N. Basu, Neutron and proton drip lines using the modified Bethe-Weizsäcker mass formula International Journal of Modern Physics E 13, 747-758 (2004) https://doi.org/10.1142/S0218301304002491https://doi.org/10.1142/S0218301304002491
P.R. Chowdhury, C. Samanta, D.N. Basu, Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Modern Physics Letters A 20,1605-1618(2005) https://doi.org/10.1142/S021773230501666Xhttps://doi.org/10.1142/S021773230501666X
N. Piskounov, Calcul différentiel et intégral, vol. 1 (MIR, Moscow, 1980), pp. 328-332
B. Demidovitch, I. Marov, Eléments de calcul numérique, (MIR, Moscow, 1973), pp. 272-281
G. Audi, The history of nuclidic masses and of their evaluation. International Journal of Mass Spectrometry, 251, 85-94 (2006) https://doi.org/10.1016/j.ijms.2006.01.048https://doi.org/10.1016/j.ijms.2006.01.048
W.J. Huang, G. Audi, M. Wang, et al., The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures. Chinese Physics C 41, 030002 (2017)https://doi.org/10.1088/1674-1137/41/3/030002https://doi.org/10.1088/1674-1137/41/3/030002
M. Wang, G. Audi, F.G. Kondev, et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C 41, 030003 (2017) https://doi.org/10.1088/1674-1137/41/3/030003https://doi.org/10.1088/1674-1137/41/3/030003
H.A. Bethe, R. F. Bacher, Stationary states of nuclei. Reviews of Modern Physics 8, 82-229 (1936). https://doi.org/10.1103/RevModPhys.8.82https://doi.org/10.1103/RevModPhys.8.82
S.Cht. Mavrodiev, M.A. Deliyergiyev, Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. International Journal of Modern Physics E, 27, 1850015 (2018) https://dx.doi.org/10.1142/S0218301318500155https://dx.doi.org/10.1142/S0218301318500155
M. W. Kirson, Mutual influence of terms in a semi-empirical mass formula, Nuclear Physics A, 798, 29-60 (2008) https://doi.org/10.1016/j.nuclphysa.2007.10.011https://doi.org/10.1016/j.nuclphysa.2007.10.011
C. Samanta, S. Adhikuri, Shell effect in Pb isotopes near the proton drip line, Nuclear Physics A 738 491-494 (2004) https://doi.org/10.1016/j.nuclphysa.2004.04.094https://doi.org/10.1016/j.nuclphysa.2004.04.094
W.D. Myers, W.J. Swiatecki MYERS, Nuclear properties according to the Thomas-Fermi model, Nuclear Physics A, 601, 141-167 (1996)
A.H. Wapstra, Encyclopedia of Physics, (Flügge, Berlin, 1958), pp. 1-37
G. Royer, A. Subercaze, Coefficients of different macro-microscopic mass formulae from the AME2012 atomic mass evaluation. Nuclear Physics A 917 1-14 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.003https://doi.org/10.1016/j.nuclphysa.2013.09.003
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution