1.Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
2.Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, P.No. 13759, Egypt
Corresponding author, mathelgohary@yahoo.com
Scan for full text
A.M. Khalaf, Azza O. El-Shal, M. M. Taha, et al. Vibrational, rotational, and triaxiality features in extended O(6) dynamical symmetry of IBM using three-body interactions. [J]. Nuclear Science and Techniques 31(5):47(2020)
A.M. Khalaf, Azza O. El-Shal, M. M. Taha, et al. Vibrational, rotational, and triaxiality features in extended O(6) dynamical symmetry of IBM using three-body interactions. [J]. Nuclear Science and Techniques 31(5):47(2020) DOI: 10.1007/s41365-020-00757-y.
The shape transition between the vibrational U(5) and deformed ,γ,-unstable O(6) dynamical symmetries of sd interacting boson model has been investigated by considering a modified O(6) Hamiltonian providing that the coefficients of the Casimir operator of O(5) are ,N,-dependent, where ,N, is the total number of bosons. The modified O(6) Hamiltonian does not contain the number operator of the ,d, boson, which is responsible for the vibrational motions. In addition, the deformation features can be achieved without using the SU(3) limit by adding to the O(6) dynamical symmetry the three-body interaction [,QQQ,],(0), where ,Q, is the O(6) symmetric quadrupole operator. Moreover, triaxiality can be generated through the inclusion of the cubic d-boson interaction ,,. The classical limit of the potential energy surface (PES), which represents the expected value of the total Hamiltonian in a coherent state is studied and examined. The modified O(6) model is applied to the even-even ,124-132,Xe isotopes. The parameters for the Hamiltonian and the PESs are calculated using a simulated search program to obtain the minimum root mean square deviation between the calculated and experimental excitation energies and ,B,(,E,2) values for a number of low-lying levels. A good agreement between the calculations and experiment results is found.
Nuclear structureExtended O(6) of IBMThree-body interactionsCoherent state
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge (1987). https://doi.org/10.1017/CBO9780511895517https://doi.org/10.1017/CBO9780511895517
F. Iachelko, Dynamic Symmetries at the Critical Point, Phys. Rev. Lett.85(2000)3580. https://doi.org/10.1103/PhysRevLett.85.3580https://doi.org/10.1103/PhysRevLett.85.3580
F. Iachelko, Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition, Phys. Rev. Lett.87(2001)052502. https://doi.org/10.1103/PhysRevLett.87.052502https://doi.org/10.1103/PhysRevLett.87.052502
F. Iachelko, Phase Transitions in Angle Variables,Phys. Rev. Lett.91(2003)132502. https://doi.org/10.1103/PhysRevLett.91.132502https://doi.org/10.1103/PhysRevLett.91.132502
A. Frank, C. E. Alonso and J. M. Arias, Search for E(5) symmetry in nuclei: The Ru isotopes, Phys. Rev. C 65(2002)014301.https://doi.org/10.1103/PhysRevC.65.014301https://doi.org/10.1103/PhysRevC.65.014301
J. E. Arias et al, U(5)-O(6) transition in the interacting boson model and the E(5) critical point symmetry, Phys. Rev. C 68(2003)041302(R). https://doi.org/10.1103/PhysRevC.68.041302https://doi.org/10.1103/PhysRevC.68.041302
J. E. Garcia-Ramos, Phase transitions and critical points in the rare-earth region, Phys. Rev. C 68(2003)024307.https://doi.org/10.1103/PhysRevC.68.024307https://doi.org/10.1103/PhysRevC.68.024307
A. Leviaten and J. M. Ginocchio, Critical-Point Symmetry in a Finite System, Pys. Rev. Lett. 90(2003)212501.https://doi.org/10.1103/PhysRevLett.90.212501https://doi.org/10.1103/PhysRevLett.90.212501
J. E. Garcia-Ramos, J. Dukelesky and J. M. Arias, β4 potential at the U(5)-O(6) critical point of the interacting boson model, Phys. Rev. C 72(2005)037301.https://doi.org/10.1103/PhysRevC.72.037301https://doi.org/10.1103/PhysRevC.72.037301
J. Jolie et al, Prolate-oblate phase transition in the Hf-Hg mass region, Phys. Rev. C 68(2003).31301(R). https://doi.org/10.1103/PhysRevC.68.031301https://doi.org/10.1103/PhysRevC.68.031301
D. J. Rowe, Quasidynamical Symmetry in an Interacting Boson Model Phase Transition, Phys. Rev. Lett. 93(2004)122502. https://doi.org/10.1103/PhysRevLett.93.122502https://doi.org/10.1103/PhysRevLett.93.122502
J. N. Ginocchio and M. W. Kirson, An intrinsic state for the interacting boson model and its relationship to the Bohr-Mottelson model, Nucl. Phys. A350(1980)31, https://doi.org/10.1016/0375-9474(80)90387-5https://doi.org/10.1016/0375-9474(80)90387-5
A. E. L. Dieperink, O. Scholten and F. Iachello, Classical Limit of the Interacting-Boson Model, Phys. Rev. Lett. 44(1980)1747, https://doi.org/10.1103/PhysRevLett.44.1747https://doi.org/10.1103/PhysRevLett.44.1747..
P. Van Isacker and J. Q. Chen, Classical limit of the interacting boson Hamiltonian, Phys. Rev. C24(1981)684, https://doi.org/10.1103/PhysRevC.24.684https://doi.org/10.1103/PhysRevC.24.684.
K. Heyde etal, Triaxial shapes in the interacting boson model, Phys. Rev. C29(1984)1420. https://doi.org/10.1103/PhysRevC.29.1420https://doi.org/10.1103/PhysRevC.29.1420
J. E. Garrica-Ramos etal, Anharmonic double-γ vibrations in nuclei and their description in the interacting boson model, Phys. Rev. C61(2000)047305. https://doi.org/10.1103/PhysRevC.61.047305https://doi.org/10.1103/PhysRevC.61.047305
J. E. Garica-Ramos etal, Anharmonic double-phonon excitations in the interacting boson model, Phys. Rev.C62(2000)064309. https://doi.org/10.1103/PhysRevC.62.064309https://doi.org/10.1103/PhysRevC.62.064309
V. Werner etal, Quadrupole shape invariants in the interacting boson model, Phys. Rev. C61(2000)021301. https://doi.org/10.1103/PhysRevC.61.021301https://doi.org/10.1103/PhysRevC.61.021301
P. Van Isacker, Dynamical Symmetry and Higher-Order Interactions. Phys. Rev. Lett. 83(1999)4269. https://doi.org/10.1103/PhysRevLett.83.4269https://doi.org/10.1103/PhysRevLett.83.4269
G. Thiamova and P. Cejnar, Prolate-oblate shape-phase transition in the O(6) description of nuclear rotation. Nucl. Phys. A765(2006),97-111. https://doi.org/10.1016/j.nuclphysa.2005.11.006https://doi.org/10.1016/j.nuclphysa.2005.11.006
A. Bohr and B. R. Mottelson, Nuclear Structure, vol. 2, Benjamin, Reading 1975.
A. S. Davydov and G. F. Filippov, Rotational states in even atomic nuclei. Nucl. Phys.8(1958)23. https://doi.org/10.1016/0029-5582(58)90153-6https://doi.org/10.1016/0029-5582(58)90153-6
R.F. Casten, Nuclear Structure from a Simple Prespective, Oxford University Press, Oxford,1990
D.J. Rowe and G. Thiamova, The many relationships between the IBM and the Bohr model. Nucl. Phys. A760(2005)59. https://doi.org/10.1016/j.nuclphysa.2005.06.001https://doi.org/10.1016/j.nuclphysa.2005.06.001
G. Thiamova and D. J. Rowe, Large boson number IBM calculations and their relationship to the Bohr model, Eur. Phys. J. A41,189 (2009). https://doi.org/10.1140/epja/i2009-10810-xhttps://doi.org/10.1140/epja/i2009-10810-x
L. Wilets and M. Jean, Surface Oscillations in Even-Even Nuclei, Phys. Rev.102(1956)788. https://doi.org/10.1103/PhysRev.102.788https://doi.org/10.1103/PhysRev.102.788
J. Yan etal, Systematics of triaxial deformation in Xe, Ba, and Ce nuclei, Phys. Rev. C48(1993)1046. https://doi.org/10.1103/PhysRevC.48.1046https://doi.org/10.1103/PhysRevC.48.1046
O. Vogel etal, Effective γ deformation near A=130 in the interacting boson model, Phys. Rev. C53(1996)1660. https://doi.org/10.1103/PhysRevC.53.1660https://doi.org/10.1103/PhysRevC.53.1660
R. Kuhn et al, Non-yrast states in 132Ba, Nucl. Phys. A597(1996)85.https://doi.org/10.1016/0375-9474(95)00415-7https://doi.org/10.1016/0375-9474(95)00415-7
Y. A. Luo, J. Q. Chen and J. P. Draayer, Nucleon-pair shell model calculations of the even-even Xe and Ba nuclei, Nucl. Phys. A669(2000)101.https://doi.org/10.1016/S0375-9474(99)00818-0https://doi.org/10.1016/S0375-9474(99)00818-0
B. Saha et al, Probing nuclear structure of 124Xe, Phys. Rev. C 70(2004)034313.https://doi.org/10.1103/PhysRevC.70.034313https://doi.org/10.1103/PhysRevC.70.034313
C. J. Barton et al, B(E2) values from low-energy Coulomb excitation at an ISOL facility: the N=80,82 Te isotopes, Phys. Lett. B 551(2003)269. https://doi.org/10.1016/S0370-2693(02)03066-6https://doi.org/10.1016/S0370-2693(02)03066-6
N. Turkan, Search for E(5) behavior: IBM and Bohr-Mottelson model with Davidson potential calculations of some even-even Xe isotopes, J. Phys. G. Nucl. Part. Phys. 34(2007)2235. https://doi.org/10.1088/0954-3899/34/11/001https://doi.org/10.1088/0954-3899/34/11/001
P. F. Mantica et al, Level structure of 126Xe: Population of low-spin levels in the decay of 1+ 126Cs and theoretical description of adjacent even-even Xe nuclides, Phys. Rev. C 45(1992)1586. https://doi.org/10.1103/PhysRevC.45.1586https://doi.org/10.1103/PhysRevC.45.1586
U. Meyer, A. Faessler and S. B. Khadkikar, The triaxial rotation vibration model in the Xe-Ba region, Nucl. Phys. A624(1997)391. https://doi.org/10.1016/S0375-9474(97)00380-1https://doi.org/10.1016/S0375-9474(97)00380-1
L. Prochniak et al, Collective quadrupole excitations in the 50 < Z, N < 82 nuclei with the general Bohr Hamiltonian, Nucl. Phys. A648(1999)181. https://doi.org/10.1016/S0375-9474(99)00023-8https://doi.org/10.1016/S0375-9474(99)00023-8
A. Rani et al, E2 transition and QJ+ systematics of even mass xenon nuclei, Phys. Rev. C 55(1997)2433. https://doi.org/10.1103/PhysRevC.55.2433https://doi.org/10.1103/PhysRevC.55.2433
L. Fortunato and A. Vitturi, Analytically solvable potentials forγ-unstable nuclei, J. Phys. G, Nucl. Part. Phys. 29(2003)1341. stacks.iop.org/JPhysG/29/1341stacks.iop.org/JPhysG/29/1341
R. F. Casten, Nuclear Structure From a Simple Prespective, Thomson Learning, Oxford Univ. Press (1990).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution