1.School of Physics, Beihang University, Beijing 100191, China
2.Shenyuan Honors College, Beihang University, Beijing 100191, China
3.Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100083, China
4.Dipartimento di Fisica Astronomia dell’Universit'a di Padova, Padova, Italy
5.Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy
6.College of Physics Science and Technology, Shenzhen University, Shenzhen 518060, China
7.College of physics, Jilin University, ChangChun 130012, China
8.China Institute of Atomic Energy, Beijing 102413, China
9.INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy
10.Irfu/CEA, Universit de Paris-Saclay, Gif-sur-Yvette, France
zgl@buaa.edu.cn.
Guangxin.Zhang@pd.infn.it
Scan for full text
Jia-Tai Li, Xue-Dou Su, Gao-Long Zhang, et al. Energy calibration of HPGe detector using the high-energy characteristic
Jia-Tai Li, Xue-Dou Su, Gao-Long Zhang, et al. Energy calibration of HPGe detector using the high-energy characteristic
A ,6,Li + ,89,Y experiment was conducted at the Laboratori Nazinali di Legnaro, INFN, Italy. The 550 ,μ,g/cm,2,-thick ,89,Y target was backed on a 340 ,μ,g/cm ,2, thick ,12,C foil. The several ,γ, rays in the experiment with energies higher than 3000 keV can most likely be ascribed to the transitions in the ,13,C nuclei, which can be formed through various interactions between the ,6,Li beam and the ,12,C foil. The high-energy properties of ,γ, rays in,13,C are employed for energy calibrating HPGe detectors, especially for the ,>,3000 keV region, which is impossible to reach by common standard sources ( ,152,Eu,133,Ba etc.). Furthermore,γ,-,γ, and particle-,γ, coincidence measurements were performed to investigate the formation of ,13,C.
Energy calibrationCoincidence measurement
E. K. Warburton, D. E. Alburger and D. J. Millener. Energies and branching ratios of transitions in 13C. Phys. Rev. C 22 (6): 2330-2340 (1980). https://doi.org/10.1103/PhysRevC.22.2330https://doi.org/10.1103/PhysRevC.22.2330
www.nndc.bnl.govwww.nndc.bnl.gov
Z. R. Shi, K. Xu and L. H. Li. Standard Source of High Energy γ-ray (China Institute of Atomic Energy, Beijing, 2008): 206-210.(in Chinese)
L. F. Canto, P. R. S. Gomes, R. Donangelo and M. S. Hussein. Fusion and breakup of weakly bound nuclei. Physics Reports 424 (1-2): 1-111 (2006). https://doi.org/10.1016/j.physrep.2005.10.006https://doi.org/10.1016/j.physrep.2005.10.006
L. F. Canto, P. R. S. Gomes, R. Donangelo, et al., Recent developments in fusion and direct reactions with weakly bound nuclei. Physics Reports 596: 1-86 (2015). https://doi.org/10.1016/j.physrep.2015.08.001https://doi.org/10.1016/j.physrep.2015.08.001
J. Lei and A. M. Moro. Puzzle of complete fusion suppression in weakly bound nuclei: A trojan horse effect? Phys. Rev. Lett. 122: 042503 (2019). https://doi.org/10.1103/PhysRevLett.122.042503https://doi.org/10.1103/PhysRevLett.122.042503
J. Lei and A. M. Moro. Unraveling the Reaction Mechanisms Leading to Partial Fusion of Weakly Bound Nuclei. Phys. Rev. Lett. 123: 232501 (2019). https://doi.org/10.1103/PhysRevLett.123.232501https://doi.org/10.1103/PhysRevLett.123.232501
B. B. Back, H. Esbensen, C. L. Jiang et al., Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86: 317-360 (2014). https://doi.org/10.1103/RevModPhys.86.317https://doi.org/10.1103/RevModPhys.86.317
C. Beck, N. Rowley, P. Papka, et al., Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets. Nuclear Physics A 834 (1-4): 440c-445c (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.059https://doi.org/10.1016/j.nuclphysa.2010.01.059
S. P. Hu, G. L. Zhang, J. C. Yang, et al., Small suppression of the complete fusion of the 6Li + 96Zr system at near-barrier energies. Phys. Rev. C 91: 044619 (2015). https://dx.doi.org/10.1103/PhysRevC.91.044619https://dx.doi.org/10.1103/PhysRevC.91.044619
C. L. Guo, G. L. Zhang, S. P. Hu, et al., Coupling effects on the fusion of 6Li + 154Sm at energies slightly above the Coulomb barrier. Phys. Rev. C 92: 014615 (2015). https://dx.doi.org/10.1103/PhysRevC.92.014615https://dx.doi.org/10.1103/PhysRevC.92.014615
M. F. Guo, G. L. Zhang, P. R. S. Gomes, et al., Negligible suppression of the complete fusion of 6,7Li on light targets, at energies above the barrier. Phys. Rev. C 94: 044605 (2016). https://dx.doi.org/10.1103/PhysRevC.94.044605https://dx.doi.org/10.1103/PhysRevC.94.044605
M. Mazzocco, N. Keeley, A. Boiano, et al., Elastic scattering for the 8B and 7Be + 208Pb systems at near-Coulomb barrier energies. Phys. Rev. C 100: 024602 (2019). https://dx.doi.org/10.1103/PhysRevC.100.024602https://dx.doi.org/10.1103/PhysRevC.100.024602
G. L. Zhang, G. X. Zhang, C. J. Lin, et al., Angular distribution of elastic scattering induced by 17F on medium-mass target nuclei at energies near the Coulomb barrier. Phys. Rev. C 97: 044618 (2018). https://doi.org/10.1103/PhysRevC.97.044618https://doi.org/10.1103/PhysRevC.97.044618
G. L. Zhang, X. P. Yang and H. Q. Zhang. Systematic study on reaction function of weakly bound nuclei. Nuclear Science and Techniques 37(10): 100508-100508 (2014). https://www.j.sinap.ac.cn/hjs/EN/10.11889/j.0253-3219.2014.hjs.37.100508https://www.j.sinap.ac.cn/hjs/EN/10.11889/j.0253-3219.2014.hjs.37.100508
L. Yang, C. J. Lin, H. M. Jia, et al., Is the Dispersion Relation Applicable for Exotic Nuclear Systems? The Abnormal Threshold Anomaly in the 6He + 209Bi System. Phys. Rev. Lett. 119: 042503 (2017). https://doi.org/10.1103/PhysRevLett.119.042503https://doi.org/10.1103/PhysRevLett.119.042503
A. Di Pietro, G. Randisi, V. Scuderi, et al., Elastic Scattering and Reaction Mechanisms of the Halo Nucleus 11Be around the Coulomb Barrier. Phys. Rev. Lett. 105: 022701 (2010). https://doi.org/10.1103/PhysRevLett.105.022701https://doi.org/10.1103/PhysRevLett.105.022701
E. F. Aguilera, P. Amador-Valenzuela, E. Martinez-Quiroz, et al., Near-barrier fusion of the 8B + 58Ni proton-halo system. Phys. Rev. Lett. 107: 092701 (2011). https://dx.doi.org/10.1103/PhysRevLett.107.092701https://dx.doi.org/10.1103/PhysRevLett.107.092701
R. Raabe, J. L. Sida, J. L. Charvet, et al., No enhancement of fusion probability by the neutron halo of 6He. Nature 431: 823-826 (2004). https://doi.org/10.1038/nature02984https://doi.org/10.1038/nature02984
A. Di Pietro, P. Figuera, F. Amorini, et al., Reactions induced by the halo nucleus 6He at energies around the Coulomb barrier. Phys. Rev. C 69: 044613 (2004). https://doi.org/10.1103/PhysRevC.69.044613https://doi.org/10.1103/PhysRevC.69.044613
L. Acosta, A. M. Sanchez-Benitez, M. E. Gomez, et al., Elastic scattering and α-particle production in 6He + 208Pb collisions at 22 MeV. Phys. Rev. C 84: 044604 (2011). https://doi.org/10.1103/PhysRevC.84.044604https://doi.org/10.1103/PhysRevC.84.044604
E. F. Aguilera, J. J. Kolata, F. M. Nunes, et al., Transfer and/or Breakup Modes in the 6He + 209Bi Reaction near the Coulomb Barrier. Phys. Rev. Lett. 84: 5058 (2000). https://doi.org/10.1103/PhysRevLett.84.5058https://doi.org/10.1103/PhysRevLett.84.5058
A. Navin, V. Tripathi, Y. Blumenfeld, et al., Direct and compound reactions induced by unstable helium beams near the Coulomb barrier. Phys. Rev. C 70: 044601 (2004). https://doi.org/10.1103/PhysRevC.70.044601https://doi.org/10.1103/PhysRevC.70.044601
A. Lemasson, A. Navin, N. Keeley, et al., Reactions with the double-Borromean nucleus 8He. Phys. Rev. C 82: 044617 (2010). https://doi.org/10.1103/PhysRevC.82.044617https://doi.org/10.1103/PhysRevC.82.044617
A. Chatterjee, A. Navin, A. Shrivastava, et al., 1n and 2n Transfer With the Borromean Nucleus 6He Near the Coulomb Barrier. Phys. Rev. Lett. 101: 032701 (2008). https://doi.org/10.1103/PhysRevLett.101.032701https://doi.org/10.1103/PhysRevLett.101.032701
C. Signorini, A. Edifizi, M. Mazzocco, et al., Exclusive breakup of 6Li by 208Pb at Coulomb barrier energies. Phys. Rev. C 67: 044607 (2003). https://doi.org/10.1103/PhysRevC.67.044607https://doi.org/10.1103/PhysRevC.67.044607
K. J. Cook, E. C. Simpson, L. T. Bezzina, et al., Origins of incomplete fusion products and the suppression of complete fusion in reactions of 7Li. Phys. Rev. Lett. 122: 102501 (2019). https://doi.org/10.1103/PhysRevLett.122.102501https://doi.org/10.1103/PhysRevLett.122.102501
A. Shrivastava, A. Navin, A. Diaz-Torres, et al., Role of the cluster structure of 7Li in the dynamics of fragment capture. Phys. Lett. B 718: 931-936 (2013). https://dx.doi.org/10.1016/j.physletb.2012.11.064https://dx.doi.org/10.1016/j.physletb.2012.11.064
A. Shrivastava, A. Navin, A. Lemasson, et al., Exploring fusion at extreme sub-barrier energies with weakly bound nuclei. Phys. Rev. Lett. 103: 232702 (2009). https://dx.doi.org/10.1103/PhysRevLett.103.232702https://dx.doi.org/10.1103/PhysRevLett.103.232702
S. P. Hu, G.L. Zhang, J. C. Yang, et al., One-neutron stripping process to excited states of the 6Li + 96Zr reaction at near-barrier energies. Phys. Rev. C 93 (1): 014621 (2016). https://link.aps.org/doi/10.1103/PhysRevC.93.014621https://link.aps.org/doi/10.1103/PhysRevC.93.014621
C. S. Palshetkar, Shital Thakur, V. Nanal, A. Shrivastava, N. Dokania, V. Singh, V. V. Parkar, P. C. Rout, R. Palit, R. G. Pillay, S. Bhattacharyya, A. Chatterjee, S. Santra, K. Ramachandran, and N. L. Singh. Fusion and quasi-elastic scattering in the 6,7Li + 197Au systems. Phys. Rev. C 89 (2): 024607 (2014). https://link.aps.org/doi/10.1103/PhysRevC.89.024607https://link.aps.org/doi/10.1103/PhysRevC.89.024607
M. F. Werby and S. Edwards. Study of neutron and alpha-particle transfer mechanisms in the 7Li(d,t)6Li reaction. Phys. Rev. C 8 (3): 978-987 (1973). https://link.aps.org/doi/10.1103/PhysRevC.8.978https://link.aps.org/doi/10.1103/PhysRevC.8.978
G. L. Zhang, G. X. Zhang, S. P. Hu, et al., One-neutron stripping processes to excited states of 90Ya in the 89Y(6Li,5Li)90Ya reaction. Phys. Rev. C 97: 014611 (2018). https://doi.org/10.1103/PhysRevC.97.014611https://doi.org/10.1103/PhysRevC.97.014611
W. J. Li, Y. G. Ma, G. Q. Zhang, et al., Yield ratio of neutrons to protons in 12C(d,n)13N and 12C(d,p)13C from 0.6 to 3 MeV. Nucl. Sci. Tech 30: 180 (2019). https://doi.org/10.1007/s41365-019-0705-0https://doi.org/10.1007/s41365-019-0705-0
W. Liu, J. L. Lou, Y. L. Ye, et al., Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction. Nucl. Sci. Tech 31: 20 (2020). https://doi.org/10.1007/s41365-020-0731-yhttps://doi.org/10.1007/s41365-020-0731-y
S. P. Hu, G. L. Zhang, G. X. Zhang, et al., A powerful combination measurement for exploring the fusion reaction mechanisms induced by weakly bound nuclei. Nuclear Instrum. Methods in Physics Research, A 914 (11): 64-68 (2019). https://doi.org/10.1016/j.nima.2018.05.067https://doi.org/10.1016/j.nima.2018.05.067
D. Testov, D. Mengoni, A. Goasduff, et al., The 4π highly-efficient light-charged-particle detector EUCLIDES, installed at the GALILEO array for in-beam γ-ray spectroscopy. Eur. Phys. J. A 55 (4): 47 (2019). https://doi.org/10.1140/epja/i2019-12714-6https://doi.org/10.1140/epja/i2019-12714-6
J. J. Valiente-Dobón, D. Mengoni, F. Recchia, et al. INFN-LNL Annual Report No. 95, 2014.
D. Testov, D. Mengoni, C. Boiano, et al., The first physical campaign of the EUCLIDES Si-ball detector coupled to GALILEO gamma-ray spectrometer. INFN-LNL Annual Report No. 105, 2015.
A. Gadea, E. Farnea, G. de Angelis, et al., A new Charged particle Si detector for EUROBALL. INFN-LNL Annual Report No. 225, 1996.
F. Ajzenberg-Selove. Energy levels of light nuclei A = 13-15. Nuclear Physics A 268 (1): 1-204 (1976). https://doi.org/10.1016/0375-9474(76)90563-7https://doi.org/10.1016/0375-9474(76)90563-7
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution