Wei-He Zeng, Hao Ma, Ming ZENG, et al. Evaluation of cosmogenic activation of copper and germanium during production in Jinping underground laboratory. [J]. Nuclear Science and Techniques 31(5):50(2020)
DOI:
Wei-He Zeng, Hao Ma, Ming ZENG, et al. Evaluation of cosmogenic activation of copper and germanium during production in Jinping underground laboratory. [J]. Nuclear Science and Techniques 31(5):50(2020) DOI: 10.1007/s41365-020-00760-3.
Evaluation of cosmogenic activation of copper and germanium during production in Jinping underground laboratory
摘要
Abstract
Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments. Thus, the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides. In this paper, we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory. Our results show that for copper and germanium materials, the largest cosmogenic background comes from ,3,H and ,57,58,60,Co, and ,3,H and ,68,Ge, respectively, which all have yields on the order of 10,-7, kg,-1, day,-1,. The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10,-6, μBq kg ,-1,.
关键词
Keywords
Cosmic raysCosmogenic radionuclidesUnderground laboratoryMonte Carlo simulation
references
K. J. Kang, J. P. Cheng, J. Li et al. Introduction to the CDEX experiment. Frontiers of Physics, 8, 412-437 (2013). https://doi.org/10.1007/s11467-013-0349-1https://doi.org/10.1007/s11467-013-0349-1
C. E. Aalseth, P. S. Barbeau, J. Colaresi et al. CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors. Physical Review D-Particles, Fields, Gravitation and Cosmology, 88:012002 (2013). https://doi.org/10.1103/PhysRevD.88.012002https://doi.org/10.1103/PhysRevD.88.012002
R. Agnese, A. J. Anderson, T. Aramaki et al. Projected sensitivity of the SuperCDMS SNOLAB experiment. Physical Review D, 95:082002 (2017). https://doi.org/10.1103/PhysRevD.95.082002https://doi.org/10.1103/PhysRevD.95.082002
E. Armengaud, Q. Arnaud, C. Augier et al. Measurement of the cosmogenic activation of germanium detectors in edelweiss-iii. Astroparticle Physics, 91:51-64 (2017). https://doi.org/10.1016/j.astropartphys.2017.03.006https://doi.org/10.1016/j.astropartphys.2017.03.006
M. Agostini, M. Allardt, A. M. Bakalyarov et al. Background-free search for neutrinoless double-β decay of 76Ge with GERDA. Nature, 544:47-52 (2017). https://doi.org/10.1038/nature21717https://doi.org/10.1038/nature21717
N. Abgrall, I. J. Arnquist, et al. The Majorana Demonstrator radioassay program. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 828:22-36 (2016). https://doi.org/10.1016/j.nima.2016.04.070https://doi.org/10.1016/j.nima.2016.04.070
J. Ma, Q. Yue, S. Lin et al. Study on cosmogenic activation in germanium detectors for future tonne-scale cdex experiment. Science China Physics, Mechanics & Astronomy, 62:11011 (2018). https://doi.org/10.1007/s11433-018-9215-0https://doi.org/10.1007/s11433-018-9215-0
C. Patrignani, et al. (Particle Data Group). Review of particle physics. Chinese Physics C, 40, 10:421-428 (2016). https://doi.org/10.1088/1674-1137/40/10/100001https://doi.org/10.1088/1674-1137/40/10/100001
Y.-C. Wu, X.-Q. Hao, Q. Yue et al. Measurement of cosmic ray flux in the China JinPing underground laboratory. Chinese Physics C, 37:086001 (2013). https://doi.org/10.1088/1674-1137/37/8/086001https://doi.org/10.1088/1674-1137/37/8/086001
J. Su, Z. Zeng, et al. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory. High Power Laser and Particle Beams, 24 (2012), https://doi.org/10.3788/HPLPB20122412.3015https://doi.org/10.3788/HPLPB20122412.3015
J. Su, Z. Zeng, et al. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory. High Power Laser and Particle Beams, 12:3015-3018 (2012). https://doi.org/10.3788/HPLPB20122412.3015https://doi.org/10.3788/HPLPB20122412.3015.
V. A. Kudryavtsev. Muon simulation codes MUSIC and MUSUN for underground physics. Computer Physics Communications, 180(3):339-346, (2009). https://doi.org/10.1016/j.cpc.2008.10.013https://doi.org/10.1016/j.cpc.2008.10.013.
T. K. Gaisser, R. Engel, and E. Resconi. Cosmic Rays and Particle physics, pages 1-29. Cambridge University Press, 2 edition (2016). https://doi.org/10.1017/CBO9781139192194https://doi.org/10.1017/CBO9781139192194.
S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250-303, (2003). https://doi.org/10.1016/S0168-9002(03)01368-8https://doi.org/10.1016/S0168-9002(03)01368-8
J. J. Back and Y. A. Ramachers. ACTIVIA: Calculation of isotope production cross-sections and yields. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 586:286-294(2008). https://doi.org/10.1016/j.nima.2007.12.008https://doi.org/10.1016/j.nima.2007.12.008.
Q. Hu, H. Ma, Z. Zeng et al. Neutron background measurements at China Jinping underground laboratory with a Bonner multisphere spectrometer. Nucl. Instrum. Meth. A, 859:37-40 (2017). https://doi.org/10.1016/j.nima.2017.03.048https://doi.org/10.1016/j.nima.2017.03.048