1.School of Physics and Optoelectronic Technology, South China University of Technology, Guangzhou 510641, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.University of Chinese Academy of Sciences, Beijing 100190, China
Corresponding author, fengzhq@scut.edu.cn
Scan for full text
Fei Niu, Peng-Hui Chen, Hui-Gan Cheng, et al. Multinucleon transfer dynamics in nearly symmetric nuclear reactions. [J]. Nuclear Science and Techniques 31(6):59(2020)
Fei Niu, Peng-Hui Chen, Hui-Gan Cheng, et al. Multinucleon transfer dynamics in nearly symmetric nuclear reactions. [J]. Nuclear Science and Techniques 31(6):59(2020) DOI: 10.1007/s41365-020-00770-1.
Within the framework of the dinuclear system model, the multinucleon transfer dynamics for nearly symmetric nuclear collisions has been investigated. The reaction mechanism in the systems of ,198,Pt+,198,Pt and ,204,Hg+,198,Pt were investigated at beam energies around the Coulomb barrier. It was found that the isotopic yields are enhanced with increased incident energy in the domain of proton-rich nuclides. However, the production on the neutron-rich side weakly depends on the energy. The angular distribution with the beam energy was also analyzed in the multinucleon transfer reactions. Projectile-like fragments were produced towards the forward emission with increasing incident energy. The target-like fragments manifested the opposite trend in the transfer reactions.
Dinuclear system modelMultinucleon transfer reactionsSymmetric nuclear collisionsAngular distribution
M. Terasawa, K. Sumiyoshi,T. Kajino et al., New Nuclear Reaction Flow during r-Process Nucleosynthesis in Supernovae: Critical Role of Light Neutron-Rich Nuclei. Nucl. Phys. A 688,1-2 (2001). https://doi.org/10.1016/S0375-9474(01)00795-3https://doi.org/10.1016/S0375-9474(01)00795-3
M. Thoennessen, 2017 update of the discoveries of nuclides. Int. J. Mod. Phys. E 27, 1830002 (2018). https://doi.org/10.1142/S0218301318300023https://doi.org/10.1142/S0218301318300023
J. Erler, N. Birge, M. Kortelainen et al., The limits of the nuclear landscape. Nature (London) 486, 509 (2012).https://doi.org/10.1038/nature11188https://doi.org/10.1038/nature11188
F. Niu, P. H. Chen, Y. F. Guo et al., Multinucleon transfer dynamics in heavy-ion collisions near Coulomb-barrier energies.Phys. Rev. C 96, 064622 (2017). https://doi.org/10.1103/PhysRevC.96.064622https://doi.org/10.1103/PhysRevC.96.064622
T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt et al., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A = 195. Phys. Rev. C 89, 024616 (2014). https://doi.org/10.1103/PhysRevC.89.024616https://doi.org/10.1103/PhysRevC.89.024616
Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of new superheavy Z =108 - 114 nuclei with 238U, 244Pu, and 248,250Cm targets. Phys. Rev. C 80, 057601 (2009). https://doi.org/10.1103/PhysRevC.80.057601https://doi.org/10.1103/PhysRevC.80.057601
G. G. Adamian, N. V. Antonenko, V. V. Sargsyan, et al., Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies. Phys. Rev. C 81, 024604 (2010). https://doi.org/10.1103/PhysRevC.81.024604https://doi.org/10.1103/PhysRevC.81.024604;
G.G. Adamian, N.V. Antonenko, V.V. Sargsyan et al., Predicted yields of new neutron-rich isotopes of nuclei with Z=64-80 in the multinucleon transfer reaction 48Ca+238U. Phys. Rev. C 81, 057602 (2010). https://doi.org/10.1103/PhysRevC.81.057602https://doi.org/10.1103/PhysRevC.81.057602
G. G. Adamian, N. V. Antonenko, and D. Lacroix,Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams. Phys. Rev. C 82, 064611 (2010). https://doi.org/10.1103/PhysRevC.82.064611https://doi.org/10.1103/PhysRevC.82.064611
X. B. Yu, L. Zhu, Z. H. Wu et al, Predictions for production of superheavy nuclei with Z=105-112 in hot fusion reactions. Nucl. Sci. Tech 29, 154 (2018). https://doi.org/10.1007/s41365-018-0501-2https://doi.org/10.1007/s41365-018-0501-2
A. Winther, Grazing reactions in collisions between heavy nuclei. Nucl. Phys. A 572, 191 (1994). https://doi.org/10.1016/0375-9474(94)90430-8https://doi.org/10.1016/0375-9474(94)90430-8;
A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-Ahttps://doi.org/10.1016/0375-9474(95)00374-A
V. I. Zagrebaev and W. Greiner, Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257 (2015). https://doi.org/10.1016/j.nuclphysa.2015.02.010https://doi.org/10.1016/j.nuclphysa.2015.02.010
D. Boilley, B. Cauchois, H. Lü et al, How accurately can we predict synthesis cross sections of superheavy elements? Nucl. Sci. Tech. 29, 172 (2018).
C. Golabek and C. Simenel, Collision Dynamics of Two U-238 Atomic Nuclei. Phys. Rev. Lett. 103, 042701 (2009), https://10.1103/PhysRevLett.103.042701https://10.1103/PhysRevLett.103.042701;
C. Simenel, Particle-number fluctuations and correlations in transfer reactions obtained using the Balian-Vénéroni variational principle. Phys. Rev. Lett. 106, 112502 (2011). https://doi.org/10.1103/PhysRevLett.106.112502https://doi.org/10.1103/PhysRevLett.106.112502
K. Sekizawa and K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions. Phys. Rev. C 88, 014614 (2013). https://doi.org/10.1103/PhysRevC.88.014614https://doi.org/10.1103/PhysRevC.88.014614;
K. Sekizawa and K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions. Phys. Rev. C 93, 029902(E) (2016). https://doi.org/10.1103/PhysRevC.93.029902https://doi.org/10.1103/PhysRevC.93.029902
L. Guo, C. Simenel, L. Shi, et al., The role of tensor force in heavy-ion fusion dynamic. Phys. Lett. B, 782, 401-405 (2018). https://doi.org/10.1016/j.physletb.2018.05.066https://doi.org/10.1016/j.physletb.2018.05.066
X. Jiang, N. Wang, Production mechanism of neutron-rich nuclei around N = 126 in the multi-nucleon transfer reaction 132Sn+ 208Pb. Chin. Phys. C 42, 104105 (2018). https://doi.org/10.1088/1674-1137/42/10/104105https://doi.org/10.1088/1674-1137/42/10/104105
K. Sekizawa, Microscopic description of production cross sections including deexcitation effects. Phys. Rev. C 96, 014615(2017). https://doi.org/10.1103/PhysRevC.96.014615https://doi.org/10.1103/PhysRevC.96.014615
J. Tian, X. Wu, K. Zhao et al., Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf. Phys. Rev. C 77, 064603 (2008). https://doi.org/10.1103/PhysRevC.77.064603https://doi.org/10.1103/PhysRevC.77.064603
K. Zhao, Z. Li, X. Wu et al., Production probability of superheavy fragments at various initial deformations and orientations in the 238U+238U reaction. Phys. Rev. C 88, 044605 (2013), https://doi.org/10.1103/PhysRevC.88.044605https://doi.org/10.1103/PhysRevC.88.044605;
K. Zhao, Z. Li, N. Wang et al., Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies. Phys. Rev. C 92, 024613 (2015). https://doi.org/10.1103/PhysRevC.92.024613https://doi.org/10.1103/PhysRevC.92.024613
E. M. Kozulin, E. Vardaci, G. N. Knyazheva et al., Mass distributions of the system 136Xe+208Pb at laboratory energies around the Coulomb barrier: A candidate reaction for the production of neutron-rich nuclei at N = 126. Phys. Rev. C 86, 044611 (2012). https://doi.org/10.1103/PhysRevC.86.044611https://doi.org/10.1103/PhysRevC.86.044611
J. S. Barrett, W. Loveland, R. Yanez et al., 136Xe+208 Pb reaction: A test of models of multinucleon transfer reactions. Phys. Rev. C 91, 064615 (2015). https://doi.org/10.1103/PhysRevC.91.064615https://doi.org/10.1103/PhysRevC.91.064615
O. Beliuskina, S. Heinz, V. Zagrebaev et al., On the synthesis of neutron-rich isotopes along the N = 126 shell in multinucleon transfer reactions. Eur. Phys. J. A 50, 161 (2014). https://doi.org/10.1140/epja/i2014-14161-3https://doi.org/10.1140/epja/i2014-14161-3
Y. X. Watanabe, Y. H. Kim, S. C. Jeong et al, Pathway for the Production of Neutron-Rich Isotopes around the N = 126 Shell Closure. Phys. Rev. Lett.115, 172503 (2015). https://doi.org/10.1103/PhysRevLett.115.172503https://doi.org/10.1103/PhysRevLett.115.172503
T. Welsh, W. Loveland, R. Yanez et al, Modeling multi-nucleon transfer in symmetric collisions of massive nuclei. Phys. Lett. B 771, 119-124 (2017). https://doi.org/10.1016/j.physletb.2017.05.044https://doi.org/10.1016/j.physletb.2017.05.044
V. V. Desai, A. Pica, W. Loveland et al, Multinucleon transfer in the interaction of 977 MeV and 1143 MeV 204Hg with 208Pb. Phys. Rev. C 101, 034612 (2020). https://doi.org/10.1103/PhysRevC.101.034612https://doi.org/10.1103/PhysRevC.101.034612
V. V. Volkov, Deep inelastic transfer reactions- The new type of reactions between complex nuclei, Phys. Rep. 44, 93 (1978). https://doi.org/10.1016/0370-1573(78)90200-4https://doi.org/10.1016/0370-1573(78)90200-4
G. G. Adamian, N. V. Antonenko, W. Scheid et al., Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). https://doi.org/10.1016/S0375-9474(97)00605-2https://doi.org/10.1016/S0375-9474(97)00605-2
G. G. Adamian, N. V. Antonenko, W. Scheid et al., Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633, 409 (1998). https://doi.org/10.1016/S0375-9474(98)00124-9https://doi.org/10.1016/S0375-9474(98)00124-9
Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model. Nucl. Phys. A 771, 50 (2006); https://doi.org/10.1016/j.nuclphysa.2006.03.002https://doi.org/10.1016/j.nuclphysa.2006.03.002
Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). https://doi.org/10.1103/PhysRevC.76.044606https://doi.org/10.1103/PhysRevC.76.044606
F. Niu, P. H. Chen, Y. F. Guo et al., Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions. Phys. Rev. C 97, 034609 (2018). https://doi.org/10.1103/PhysRevC.97.034609https://doi.org/10.1103/PhysRevC.97.034609
P. H. Chen, F. Niu, W, Zuo, and Z. Q. Feng, Approaching the neutron-rich heavy and superheavy nuclei by multinucleon transfer reactions with radioactive isotopes. Phys. Rev. C 101, 024610 (2020). https://doi.org/10.1103/PhysRevC.101.024610https://doi.org/10.1103/PhysRevC.101.024610
P. H. Chen, Z. Q. Feng, J. Q. Li, and H. F. Zhang, A statistical approach to describe highly excited heavy and superheavy nuclei. Chin. Phys. C 40, 091002 (2016). https://iopscience.iop.org/1674-1137/40/9/091002https://iopscience.iop.org/1674-1137/40/9/091002
P. H. Chen, Z. Q. Feng, F. Niu et al.,Effect of isospin diffusion on the production of neutron-rich nuclei in multinucleon transfer reactions. Eur. Phys, J. A 53, 95 (2017). https://doi.org/10.1103/PhysRevC.97.034609https://doi.org/10.1103/PhysRevC.97.034609
Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of new superheavy Z=108-114 nuclei with 238U, 244Pu, and 248,250Cm targets. Phys. Rev. C 80, 057601 (2009). https://doi.org/10.1103/PhysRevC.80.057601https://doi.org/10.1103/PhysRevC.80.057601
Z. Q. Feng, G. M. Jin, and J. Q. Li, Influence of entrance channels on the formation of superheavy nuclei in massive fusion reactions. Nucl. Phys. A 836, 82 (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.244https://doi.org/10.1016/j.nuclphysa.2010.01.244
P. H. Chen, F. Niu, Y. F. Guo, et al., Nuclear dynamics in multinucleon transfer reactions near Coulomb barrier energies. Nucl. Sci. Tech 29, 185 (2018). https://doi.org/10.1007/s41365-018-0521-yhttps://doi.org/10.1007/s41365-018-0521-y
H. Feldmeier, Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach. Rep. Prog. Phys. 50, 915-994 (1987). https://iopscience.iop.org/0034-4885/50/8/001https://iopscience.iop.org/0034-4885/50/8/001
Z. Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-zhttps://doi.org/10.1007/s41365-018-0379-z
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution