1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Corresponding author, chenjianhui@zjlab.org.cn
Scan for full text
He-Ping Geng, Jian-Hui Chen, Zhen-Tang Zhao. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL. [J]. Nuclear Science and Techniques 31(9):88(2020)
He-Ping Geng, Jian-Hui Chen, Zhen-Tang Zhao. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL. [J]. Nuclear Science and Techniques 31(9):88(2020) DOI: 10.1007/s41365-020-00794-7.
Optical vortices have the main features of helical wavefronts and spiral phase structures, and carry orbital angular momentum (OAM). This special structure of visible light has been produced and studied for various applications. These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes. In this article, we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths ,∼,1 nm. Compared to other methods, this approach is easier to implement, cost-effective, and more efficient.
X-rayOrbital angular momentum (OAM)Synchrotron light sourceFree-electron laser (FEL)
H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry et al., Roadmap on structured light. Journal of Optics 19, 013001(2016). https://doi.org/10.1088/2040-8978/19/1/013001https://doi.org/10.1088/2040-8978/19/1/013001
J. F. Nye, M. V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 0012(1974). https://doi.org/10.1098/rspa.1974.0012https://doi.org/10.1098/rspa.1974.0012
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys.Rev. A 45, 8185(1992). https://doi.org/10.1103/PhysRevA.45.8185https://doi.org/10.1103/PhysRevA.45.8185
L. Allen, S. M. Barnett, M. J. Padgett (Eds.), Optical Angular Momentum (Institute of Physics Pub., Bristol, Philadelphia, 2003).
G. Molina-Terriza, J. P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305(2007). https://doi.org/10.1038/nphys607https://doi.org/10.1038/nphys607
S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299(2008). https://doi.org/10.1002/lpor.200810007https://doi.org/10.1002/lpor.200810007
A. M. Yao, M. J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161(2011). https://doi.org/10.1364/AOP.3.000161https://doi.org/10.1364/AOP.3.000161
J. P. Torres, L. Torner (Eds.), Twisted photon: Applications of Light with Orbital Angular Momentum. 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
D. L. Andrews, M. Babiker (Eds.), The Angular Momentum of Light, Cambridge University Press 2013.
R. W. Bowman, M. J. Padgett, Optical trapping and binding. Rep. Prog. Phys. 76, 026401(2013). https://doi.org/10.1088/0034-4885/76/2/026401https://doi.org/10.1088/0034-4885/76/2/026401
M. J. Padgett, Orbital angular momentum 25 years on. Opt. Express 25, 11265(2017). https://doi.org/10.1364/OE.25.011265https://doi.org/10.1364/OE.25.011265
Y.J. Shen, X.J. Wang, Z.W. Xie et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications 8, 90(2019). https://doi.org/10.1038/s41377-019-0194-2https://doi.org/10.1038/s41377-019-0194-2
D. S. Bykov, S.R. Xie, R. Zeltner et al., Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light: Science & Applications 7, 22(2018). https://doi.org/10.1038/s41377-018-0015-zhttps://doi.org/10.1038/s41377-018-0015-z
N.S. Huang, K. Li, H.X. Deng, BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code. Nucl. Sci. Tech. 30, 39(2019). https://doi.org/10.1007/s41365-019-0559-5https://doi.org/10.1007/s41365-019-0559-5
H.L. Wu, J.H. Chen, Z. T. Zhao et al., Proposal for a high brightness γ-ray source at the SXFEL. Nucl. Sci. Tech. 26, 050103(2015). https://doi.org/10.13538/j.1001-8042/nst.26.050103https://doi.org/10.13538/j.1001-8042/nst.26.050103
A. G. Peele, P. J. McMahon, D. Paterson et al., Observation of an x-ray vortex. Opt. Lett. 27, 1752(2002). https://doi.org/10.1364/OL.27.001752https://doi.org/10.1364/OL.27.001752
A. G. Peele, K. A. Nugent, A. P. Mancuso et al., X-ray phase vortices: theory and experiment. J. Opt. Soc. Am. A 21, 1575(2004). https://doi.org/10.1364/JOSAA.21.001575https://doi.org/10.1364/JOSAA.21.001575
B. Terhalle, A. Langner, V. A. Guzenko et al., Generation of extreme ultraviolet vortex beams using computer generated holograms. Optics Letters 36, 4143(2011). https://doi.org/10.1364/OL.36.004143https://doi.org/10.1364/OL.36.004143
A. Sakdinawat, Y.W. Liu, Soft-x-ray microscopy using spiral zone plates. Optics Letters 32, 2635(2007). https://doi.org/10.1364/OL.32.002635https://doi.org/10.1364/OL.32.002635
D. Cojoc, B. Kaulich, A. Carpentiero et al., X-ray vortices with high topological charge. Microelectronic Engineering 83, 1360(2006). https://doi.org/10.1016/j.mee.2006.01.066https://doi.org/10.1016/j.mee.2006.01.066
Y. Kohmura, K. Sawada, M. Taguchi et al., Formation of x-ray vortex dipoles using a single diffraction pattern and direct phase measurement using interferometry. Appl. Phys. Lett. 94, 101112(2009). https://doi.org/10.1063/1.3095828https://doi.org/10.1063/1.3095828
J. C. T Lee, S. J. Alexander, S. D. Kevan et al., Laguerre-Gauss and Hermite-Gauss soft X-ray states generated using diffractive optics. Nat. Photon. 13, 205(2019). https://doi.org/10.1038/s41566-018-0328-8https://doi.org/10.1038/s41566-018-0328-8
L. Loetgering, M. Baluktsian, K. Keskinbora et al., Generation and characterization of focused helical x-ray beams. Sci. Adv. 6, eaax8836(2020). https://dx.doi.org/10.1126/sciadv.aax8836https://dx.doi.org/10.1126/sciadv.aax8836
D. Seipt, A. Surzhykov, S. Fritzsche, Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light. Phys. Rev. A 90, 012118(2014). https://dx.doi.org/10.1103/PhysRevA.90.012118https://dx.doi.org/10.1103/PhysRevA.90.012118
V. Petrillo, G. Dattoli, I. Drebot et al., Compton Scattered X-Gamma Rays with Orbital Momentum. Phys. Rev. Lett. 117, 123903(2016). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.123903https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.123903
M. Zurch, C. Kern, P. Hansinger et al., Strong-field physics with singular light beams. Nature physics 8, 743(2012). https://doi.org/10.1038/nphys2397https://doi.org/10.1038/nphys2397
G. Gariepy, J. Leach, K. T. Kim et al., Creating High-Harmonic Beams with Controlled Orbital Angular Momentum. Phys. Rev. Lett. 113, 153901(2014). https://dx.doi.org/10.1103/PhysRevLett.113.153901https://dx.doi.org/10.1103/PhysRevLett.113.153901
C. Hernandez-Garcia, J. Vieira, J. T. Mendonca et al.,Generation and Applications of Extreme-Ultraviolet Vortices. Photonics 4, 28(2017). https://doi.org/10.3390/photonics4020028https://doi.org/10.3390/photonics4020028
L. Rego, K. M. Dorney, N. J. Brooks et al., Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486(2019). https://doi.org/10.1126/science.aaw9486https://doi.org/10.1126/science.aaw9486
J. Vieira, R.M.G.M. Trines, E.P. Alves et al., Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nature Communications 7, 10371(2016). https://doi.org/10.1038/ncomms10371https://doi.org/10.1038/ncomms10371
J. Vieira, R. M. G. M. Trines, E. P. Alves et al., High Orbital Angular Momentum Harmonic Generation. Phys. Rev. Lett. 117, 265001(2016). https://doi.org/10.1103/PhysRevLett.117.265001https://doi.org/10.1103/PhysRevLett.117.265001
A. Picon, A. Benseny, J. Mompart et al., Transferring orbital and spin angular momenta of light to atoms. New Journal of Physics 12, 083053(2010). https://doi.org/10.1088/1367-2630/12/8/083053https://doi.org/10.1088/1367-2630/12/8/083053
A. Picon, J. Mompart, J. R. V. de Aldana, et al., Photoionization with orbital angular momentum beams. Opt. Express 18, 3660(2010). https://doi.org/10.1364/OE.18.003660https://doi.org/10.1364/OE.18.003660
M. v. Veenendaal, I. McNulty, Prediction of Strong Dichroism Induced by X Rays Carrying Orbital Momentum. Phys. Rev. Lett. 98, 157401(2007). https://link.aps.org/doi/10.1103/PhysRevLett.98.157401https://link.aps.org/doi/10.1103/PhysRevLett.98.157401
M. v. Veenendaal, Interaction between x-ray and magnetic vortices. Phys. Rev. B 92, 245116(2015). https://doi.org/10.1103/PhysRevB.92.245116https://doi.org/10.1103/PhysRevB.92.245116
G. Friesecke, R. D. James, D. Juestel, Twisted X-Rays: Incoming Waveforms Yielding Discrete Diffraction Patterns for Helical Structures. SIAM J. Appl. Math. 76, 1191(2016). https://doi.org/10.1137/15M1043418https://doi.org/10.1137/15M1043418
D. Juestel, G. Friesecke, R. D. James, Bragg-von Laue diffraction generalized to twisted X-rays. Acta Cryst. A 72, 190(2016). https://dx.doi.org/10.1107/S2053273315024390https://dx.doi.org/10.1107/S2053273315024390
L. Ye, J. R. Rouxel, S. Asban et al., Probing Molecular Chirality by Orbital-Angular-Momentum-Carrying X-ray Pulses. J. Chem. Theory Comput. 15, 4180(2019). https://doi.org/10.1021/acs.jctc.9b00346https://doi.org/10.1021/acs.jctc.9b00346
S. Sasaki, I. McNulty, Proposal for Generating Brilliant X-Ray Beams Carrying Orbital Angular Momentum. Phys. Rev. Lett. 100, 124801(2008). https://doi.org/10.1103/PhysRevLett.100.124801https://doi.org/10.1103/PhysRevLett.100.124801
J. Bahrdt, K. Holldack, P. Kuske et al., First Observation of Photons Carrying Orbital Angular Momentum in Undulator Radiation. Phys. Rev. Lett. 111, 034801(2013). https://doi.org/10.1103/PhysRevLett.111.034801https://doi.org/10.1103/PhysRevLett.111.034801
T. Kaneyasu, Y. Hikosaka, M. Fujimoto et al., Observation of an optical vortex beam from a helical undulator in the XUV region. J. Synchrotron Rad. 24, 934(2017). https://doi.org/10.1107/S1600577517009626https://doi.org/10.1107/S1600577517009626
E. Hemsing, A. Knyazik, M. Dunning et al., Coherent optical vortices from relativistic electron beams. Nat. Phys. 9, 549(2013). https://doi.org/10.1038/nphys2712https://doi.org/10.1038/nphys2712
E. Hemsing, M. Dunning, C. Hast et al., First Characterization of Coherent Optical Vortices from Harmonic Undulator Radiation. Phys. Rev. Lett. 113, 134803(2014). https://doi.org/10.1103/PhysRevLett.113.134803https://doi.org/10.1103/PhysRevLett.113.134803
P. R. Ribic, D. Gauthier, G. D. Ninno, Generation of Coherent Extreme-Ultraviolet Radiation Carrying Orbital Angular Momentum. Phys. Rev. Lett. 112, 203602(2014). https://doi.org/10.1103/PhysRevLett.112.203602https://doi.org/10.1103/PhysRevLett.112.203602
P. R. Ribic, B. Rosner, D. Gauthier et al., Extreme-Ultraviolet Vortices from a Free-Electron Laser. Phys. Rev. X 7, 031036(2017). https://doi.org/10.1103/PhysRevX.7.031036https://doi.org/10.1103/PhysRevX.7.031036
Z.T. Zhao, D. Wang, Q. Gu et al., Status of the SXFEL Facility. Appl. Sci. 7, 607(2017). https://doi.org/10.3390/app7060607https://doi.org/10.3390/app7060607
A. Afanasev, A. Mikhailichenko, On generation of photons carrying orbital angular momentum in the helical undulator. arXiv:1109.1603(2011).
M. Katoh, M. Fujimoto, H. Kawaguchi et al., Angular Momentum of Twisted Radiation from an Electron in Spiral Motion. Phys. Rev. Lett. 118, 094801(2017). https://doi.org/10.1103/PhysRevLett.118.094801https://doi.org/10.1103/PhysRevLett.118.094801
M. Katoh, M. Fujimoto, N. S. Mirian et al., Helical Phase Structure of Radiation from an Electron in Circular Motion. Sci. Rep. 7, 6130(2017). https://doi.org/10.1038/s41598-017-06442-2https://doi.org/10.1038/s41598-017-06442-2
H. Kawaguchi, M. Katoh, Orbital angular momentum of Lienard-Wiechert fields. Prog. Theor. Exp. Phys. 2019, 083A02(2019). https://doi.org/10.1093/ptep/ptz059https://doi.org/10.1093/ptep/ptz059
V. Epp, U. Guselnikova, Angular momentum of radiation from a charge in circular and spiral motion. Physics Letters A 383, 2668(2019). https://doi.org/10.1016/j.physleta.2019.05.038https://doi.org/10.1016/j.physleta.2019.05.038
E. Hemsing, P. Musumeci, S. Reiche et al., Helical electron-beam microbunching by harmonic coupling in a helical undulator. Physical Review Letters 102, 174801(2009). https://doi.org/10.1103/PhysRevLett.102.174801https://doi.org/10.1103/PhysRevLett.102.174801
M.H.J , X. Yang, H.J. Xu et al., Shanghai Synchrotron Radiation Facility. Chinese Science Bulletin 54, 4171(2009). https://doi.org/10.1007/s11434-009-0689-yhttps://doi.org/10.1007/s11434-009-0689-y
Z.C. Chen, Y.B. Leng, R.X. Yuan et al., Study of algorithms of phase advance measurement between BPMs and its application in SSRF. Nuclear Science and Techniques 24, 010102(2013). https://doi.org/10.13538/j.1001-8042/nst.2013.01.007https://doi.org/10.13538/j.1001-8042/nst.2013.01.007
Z.C. Chen, Y.B. Leng, R.X. Yuan et al., Beam position monitor troubleshooting by using principal component analysis in Shanghai Synchrotron Radiation Facility. Nuclear Science and Techniques 25, 020102(2014). https://doi.org/10.13538/j.1001-8042/nst.25.020102https://doi.org/10.13538/j.1001-8042/nst.25.020102
T. Tanaka, H. Kitamura, SPECTRA: a synchrotron radiation calculation code. Journal of Synchrotron Radiation 8, 1221(2001). https://doi.org/10.1107/S090904950101425Xhttps://doi.org/10.1107/S090904950101425X
C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nuclear Science and Techniques 29, 160(2018). https://doi.org/10.1007/s41365-018-0490-1https://doi.org/10.1007/s41365-018-0490-1
K.-J. Kim, Z.R. Huang, R. Lindberg, Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-Ray Generation. Cambridge University Press 2017.
W. Ackermann, G. Asova, K. Zapfe et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336(2007). https://doi.org/10.1038/nphoton.2007.76https://doi.org/10.1038/nphoton.2007.76
J. Galayda, J. Arthur, P. Anfinrud et al., Linac Coherent Light Source (LCLS) conceptual design report. SLAC, Report SLAC-R-593, 2002
T. Shintake et al., sPring-8 Compact SASE Source Conceptual Design Report. 2005. DOI: http://www-xfel.spring8.or.jphttp://www-xfel.spring8.or.jp
R. Brinkmann, et al. TESLA XFEL: First stage of the X-ray laser laboratory (Technical Design Report, Supplement). DESY, Report TESLA FEL 2002-09, 2002.
H.-S. Kang, K.-W. Kim, I.-S. Ko, Current status of PAL-XFEL project. Proceedings of IPAC 2014, p. 2897, 2014
R. Ganter, et al. SwissFEL-conceptual design report. Paul Scherrer Institute (PSI), Report, 2010
R. Bonifacio, C. Pellegrini, L. M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373(1984). https://doi.org/10.1016/0030-4018(84)90105-6https://doi.org/10.1016/0030-4018(84)90105-6
N. Kroll, W. McMullin, Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A, 17, 300(1978). https://doi.org/10.1103/PhysRevA.17.300https://doi.org/10.1103/PhysRevA.17.300
T. Kaneyasu, Y. Hikosaka, M. Fujimoto et al., Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Phys. Rev. A 95, 023413(2017). https://doi.org/10.1103/PhysRevA.95.023413https://doi.org/10.1103/PhysRevA.95.023413
M. Eriksson, J. F. van der Veen, C. Quitmann, Diffraction-limited storage rings - a window to the science of tomorrow. J. Synchrotron Radiat. 21, 837(2014). https://doi.org/10.1107/S1600577514019286https://doi.org/10.1107/S1600577514019286
E. Hemsing, Coherent photons with angular momentum in a helical afterburner. Physical Review Accelerators and Beams 23, 020703(2020). https://doi.org/10.1103/PhysRevAccelBeams.23.020703https://doi.org/10.1103/PhysRevAccelBeams.23.020703
T. Tanaka, SIMPLEX: simulator and postprocessor for free-electron laser experiments. Journal of Synchrotron Radiation 22, 1319(2015). https://doi.org/10.1107/S1600577515012850https://doi.org/10.1107/S1600577515012850
C. J. Bocchetta, et al. FERMI@Elettra CDR, http://www.elettra.trieste.it/FERMIhttp://www.elettra.trieste.it/FERMI, (2007).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution