1.School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Key Laboratory for Particle Physics and Cosmology(INPAC), 800 Dongchuan Road, Shanghai 200240, China
Corresponding author, pratibhajuyal@sjtu.edu.cn
Scan for full text
Pratibha Juyal, Karl-Ludwig Giboni, Xiang-Dong Ji, et al. On proportional scintillation in very large liquid xenon detectors. [J]. Nuclear Science and Techniques 31(9):93(2020)
Pratibha Juyal, Karl-Ludwig Giboni, Xiang-Dong Ji, et al. On proportional scintillation in very large liquid xenon detectors. [J]. Nuclear Science and Techniques 31(9):93(2020) DOI: 10.1007/s41365-020-00797-4.
The charge read out of a liquid xenon (LXe) detector via proportional scintillation in the liquid phase was first realized by the Waseda group 40 years ago, but the technical challenges involved were overwhelming. Although the tests were successful, this method was finally discarded, and eventually nearly forgotten. Currently, this approach is not considered for large LXe dark matter detectors. Instead, the dual phase technology was selected despite many limitations and challenges. In two independent studies, two groups from Columbia University and Shanghai Jiao Tong University reevaluated proportional scintillation in the liquid phase. Both studies established the merits for very large LXe detectors, but the Columbia group also encountered apparent limitations, namely, the shadowing of the light by the anode wires, and a dependence of the pulse shape on the drift path of the electrons in the anode region. The differences between the two studies, however, are not intrinsic to the technique, but a direct consequence of the chosen geometry. Taking the geometrical differences into account, the results match without ambiguity. They also agree with the original results from the Waseda group.
Liquid detectorsTime projection chambers (TPC)Multiplication and electroluminescence in rare gases and liquids
M. I. Lopes and V. Chepel, Rare gas liquid detectors. In Electronic Excitations in Liquefied Rare Gases, Ed. W. F. Schmidt ans E. Illenberger, American Scientific Publishers, (2005) 331-388.
E. Aprile, A.E. Bolotnikov, A.I. Bolozdynya et al., Noble Gas Detectors, WILEY-VCH, (2006) https://doi.org/10.1002/9783527610020https://doi.org/10.1002/9783527610020
E. Aprile, T. Doke, Liquid Xenon detectors for particle physics and astrophysics, Rev. Mod. Phys. 82 (2010) 2053. https://doi.org/10.1103/revmodphys.82.2053https://doi.org/10.1103/revmodphys.82.2053
K. Abe, K. Hieda, K. Hiraide et al., XMASS Detector, Nucl. Instr. Meth. A716 (2013) 78. https://arxiv.org/abs/1301.2815v1https://arxiv.org/abs/1301.2815v1
E. Aprile, J. Angle, F. Arneodo et al., (XENON10 collaboration), Design and Performance of the XENON10 Dark Matter Experiment, Astropart. Phys. 34 (2011) 679, https://doi.org/10.1016/j.astropartphys.2011.01.006https://doi.org/10.1016/j.astropartphys.2011.01.006
V. Chepel, H. Arajo, Liquid noble gas detectors for low energy particle physics, JINST 8 (2013) R04001. https://doi.org/10.1088/1748-0221/8/04/r04001https://doi.org/10.1088/1748-0221/8/04/r04001
B.A. Dolgoshein et al., New Method of Registration of Ionizing Particle Tracks in Condensed Matter, JETP Lett. 11 (1970) 351 https://ui.adsabs.harvard.edu/abs/1970JETPL..11..351Dhttps://ui.adsabs.harvard.edu/abs/1970JETPL..11..351D
M. Miyajima, Y. Hoshi, T. Doke et al., A Self-Triggered Liquid Xenon Drift Chamber by the Use of Proportional Ionization or Proportional Scintillation, Nucl Instr and Meth. 160 (1979) 239. https://doi.org/10.1016/0029-554x(79)90599-8https://doi.org/10.1016/0029-554x(79)90599-8
K. Masuda, S. Takasu, T. Doke et al., A Liquid Xenon Proportional Scintillation Counter, Nucl. Instrum. Meth. 160 (1979) 247. https://doi.org/10.1016/0029-554x(79)90600-1https://doi.org/10.1016/0029-554x(79)90600-1
E. Aprile, H. Contreras, L.W. Goetzke et al., Measurements of Proportional Scintillation and Electron Multiplication in Liquid Xenon using Thin Wires, JINST 9 (2014) P11012. https://doi.org/10.1088/1748-0221/9/11/p11012https://doi.org/10.1088/1748-0221/9/11/p11012
T. Ye, K.L. Giboni, X. Ji, Initial Evaluation of Proportional Scintillation in Liquid Xenon for Direct Dark Matter Detection, JINST 9 (2014) P12007. https://doi.org/10.1088/1748-0221/9/12/p12007https://doi.org/10.1088/1748-0221/9/12/p12007
J. Aalbers, F. Agostini, M. Alfonsi et al., Darwin: Towards the ultimate Dark Matter Detector, JCAP 1611 (2016) 017. https://doi.org/10.1088/1475-7516/2016/11/017https://doi.org/10.1088/1475-7516/2016/11/017
E. Aprile, M. Alfonsi, K. Arisaka et al., Observation and applications of single-electron charge signals in the XENON100 experiment, J. Phys. G41 (2014) 035201, https://doi.org/10.1088/0954-3899/41/3/035201https://doi.org/10.1088/0954-3899/41/3/035201
Hogenbirk , J. Aalbers, P. A. Breur et al., Precision Measurements of the Scintillation Pulse Shape for Low-Energy Recoils in Liquid Xenon, JINST 13 (2018) P05016. https://doi.org/10.1088/1748-0221/13/05/p05016https://doi.org/10.1088/1748-0221/13/05/p05016
E. Aprile, M. Alfonsi, K. Arisaka et al.,(XENON100 Collaboration), Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109,(2012) 181301. https://doi.org/10.1103/physrevlett.109.181301https://doi.org/10.1103/physrevlett.109.181301
Andi Tan M. Xiao, X. Cui et al.,(PandaX collaboration), Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett., 117 (2016) 121303. https://doi.org/10.1103/physrevlett.117.121303https://doi.org/10.1103/physrevlett.117.121303
D. S. Akerib, H. M. Arajo, X. Bai, et al.,(LUX collaboration), Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment, Phys. Rev. Lett. 116, (2016), 161302. https://doi.org/10.1103/physrevlett.116.161302https://doi.org/10.1103/physrevlett.116.161302
E. Aprile, J. Aalbers, F. Agostini et al.,(XENON1T collaboration), XENON1T dark matter data analysis: Signal and background models and statistical inference, Phys.Rev. Lett. 99, (2019), 112009. https://doi.org/10.1103/physrevd.99.112009https://doi.org/10.1103/physrevd.99.112009
O. Bunemann, T. E. Cranshaw, J. A. Harvey, Design of Grid Ionization Chambers, Can. J. Res. 27 (1949) 191. https://doi.org/10.1139/cjr49a-019https://doi.org/10.1139/cjr49a-019
E. Gatti, G. Padovini, L. Quartapelle et al., Considerations for the Design of a Time Projection Liquid Argon Ionization Chamber, IEEE NS 26 (2) (1979) 2910. https://doi.org/10.1109/tns.1979.4330558https://doi.org/10.1109/tns.1979.4330558
X. Cao, X. Chen,Y. Chen et al., PandaX: a liquid xenon dark matter experiment at CJPL, Sci China-Phys Mech Astron, (2014), 57. https://doi.org/10.1007/s11433-014-5521-2https://doi.org/10.1007/s11433-014-5521-2
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution