1.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
2.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
xuyuping@jsinm.org
Correspondence: mqchen@jiangnan.edu.cn;
Scan for full text
Dong-Hui Pan, Jie Sheng, Xin-Yu Wang, et al. In vivo SPECT imaging of an 131I-labeled PM 2.5 mimic substitute. [J]. Nuclear Science and Techniques 31(11):111(2020)
Dong-Hui Pan, Jie Sheng, Xin-Yu Wang, et al. In vivo SPECT imaging of an 131I-labeled PM 2.5 mimic substitute. [J]. Nuclear Science and Techniques 31(11):111(2020) DOI: 10.1007/s41365-020-00818-2.
The health effects of ambient PM2.5 and its potential mechanisms have generated considerable interest. In vitro cell studies and ex vivo animal experiments may not accurately determine the characteristics of PM2.5 particles. To better understand their detailed mechanisms, we performed an in vivo study using single photon emission tomography (SPECT) imaging. To mimic the PM 2.5 particles, SiO,2, nanoparticles modified by ethylene carbonate or polyvinyl pyrrolidone were labeled with ,131,I. After administration via inhalation, in vivo SPECT imaging of the radiolabeled particles in Sprague Dawley rats was performed. It was found that radioactivity accumulated in the lungs and trachea 6 and 24 h after administration. In addition, significant radioactivity was observed in the abdomen, including the liver and kidneys. The results were also confirmed by ex vivo autoradiography. This study revealed that in vivo SPECT imaging could be an effective method for investigating the properties of PM 2.5 particles.
PM 2.5 mimic substituteEC/SiO2 nanoparticlesSPECT images131I labeling
G.H. Yang, Y. Wang, Y.X. Zeng et al., Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet (London, England) 381(9882), 1987-2015 (2013). https://doi.org/10.1016/S0140-6736(13)61097-1https://doi.org/10.1016/S0140-6736(13)61097-1.
J. Lelieveld, J.S. Evans, M. Fanis et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367-371 (2015). https://doi.org/10.1038/nature15371https://doi.org/10.1038/nature15371
H.B. Guo, S.J. Huang, M.X. Chen, et al., Air pollutants and asthma patient visits: Indication of source influence. The Science of the total environment 625, 355-362 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.298https://doi.org/10.1016/j.scitotenv.2017.12.298
V.C. Pan, F. Kazemiparkouhi, J. Manjourides et al., Long-Term PM 2.5 Exposures and Respiratory, Cancer and Cardiovascular Mortality in American Older Adults. American Journal of Epidemiology 186(8), 961-969 (2017). https://doi.org/10.1093/aje/kwx166https://doi.org/10.1093/aje/kwx166
Q. Wang, J.N. Wang, M.Z. Zeng et al., A county-level estimate of PM 2.5 related chronic mortality risk in China based on multi-model exposure data. Environment International 110, 105-112 (2017). https://doi.org/10.1016/j.envint.2017.10.015https://doi.org/10.1016/j.envint.2017.10.015
E.H. Wilker, S.R. Preis, A.S. Beiser et al., Long-Term Exposure to Fine Particulate Matter, Residential Proximity to Major Roads and Measures of Brain Structure. Stroke, 46(5), 1161-1166 (2012). https://doi.org/10.1161/STROKEAHA.114.00834https://doi.org/10.1161/STROKEAHA.114.00834.
A. Zanobetti, J. Schwartz, The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environmental Health Perspectives 117(6), 898-903 (2009). https://doi.org/10.1289/ehp.0800108https://doi.org/10.1289/ehp.0800108
M. Franklin, P. Koutrakis, J. Schwartz, The role of particle composition on the association between PM 2.5 and mortality. Epidemiology 19(5), 680-689 (2008). https://doi.org/10.1097/ede.0b013e3181812bb7https://doi.org/10.1097/ede.0b013e3181812bb7
K.A Miller, D.S. Siscovick, L. Sheppard et al., Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine 356(5), 447-458 (2007). https://doi.org/10.1016/j.envint.2017.10.015https://doi.org/10.1016/j.envint.2017.10.015.
J. Lelieveld, J.S. Evans, M. Fnais et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367-371 (2015). https://doi.org/10.1056/NEJMoa054409https://doi.org/10.1056/NEJMoa054409
W. Liu, M. Zhang, J. Feng et al., The Influence of Quercetin on Maternal Immunity, Oxidative Stress, and Inflammation in Mice with Exposure of Fine Particulate Matter during Gestation. International Journal of Environmental Research & Public Health 14(6), 592-607 (2017). https://doi.org/10.3390/ijerph14060592https://doi.org/10.3390/ijerph14060592.
O.G. Aztatzi-Aguilar, M. Uribe-Ramírez, J. Narváez-Morales et al., Early kidney damage induced by subchronic exposure to PM2.5 in rats. Particle and Fibre Toxicology 13(1), 68-87 (2016). https://doi.org/10.1186/s12989-016-0179-8https://doi.org/10.1186/s12989-016-0179-8
Y. Wei, X.N. Cao, X.L. Tang et al., Urban fine particulate matter (PM2.5) exposure destroys blood-testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicology Mechanisms & Methods 28(4), 302-339 (2018). https://doi.org/10.1080/15376516.2017.1410743https://doi.org/10.1080/15376516.2017.1410743
W. Zhou, D.D. Tian, H. Jun et al., Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget 7(15), 20691-20703 (2016). https://doi.org/10.18632/oncotarget.7842https://doi.org/10.18632/oncotarget.7842
B. Crobeddu, L. Aragao-Santiago, L.C. Bui et al., Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environmental Pollution 230, 125-135(2017). https://doi.org/10.1016/j.envpol.2017.06.051https://doi.org/10.1016/j.envpol.2017.06.051.
S.L. Feng, D. Gao, F. Liao et al., The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology & Environmental Safety 128, 67-74 (2016). https://doi.org/10.1016/j.ecoenv.2016.01.030https://doi.org/10.1016/j.ecoenv.2016.01.030.
M. Plusquin, F. Guida, S. Polidoro et al., DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environment International 108, 127-136 (2017). https://doi.org/10.1016/j.envint.2017.08.006https://doi.org/10.1016/j.envint.2017.08.006
R.J. Chen, X. Meng, A. Zhao et al., DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: A randomized crossover trial. Environment International 94, 614-619 (2016). https://doi.org/10.1016/j.envint.2016.06.026https://doi.org/10.1016/j.envint.2016.06.026
B. Leclercq, A. Platel, S. Antherieu et al., Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environmental Pollution 230, 163-177 (2017). https://doi.org/10.1016/j.envpol.2017.06.028https://doi.org/10.1016/j.envpol.2017.06.028.
C.V. Breton, J. Yao, J. Millstein et al., Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation and Childhood Blood Pressure and Carotid Intima-Media Thickness in the Children’s Health Study. Environmental Health Perspectives 124(12), 1905-1912 (2016). https://doi.org/10.1289/EHP181https://doi.org/10.1289/EHP181
B.F. Cachon, S. Firmin, A. Verdin et al., Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM 2.5 and PM >2.5) collected from Cotonou, Benin. Environmental Pollution 185, 340-351 (2014). https://doi.org/10.1016/j.envpol.2013.10.026https://doi.org/10.1016/j.envpol.2013.10.026.
C.W. Liu, T.L. Lee, Y.C. Chen et al., PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-kappaB-dependent pathway. Part Fibre Toxicol 15(1), 4-19 (2018). https://doi.org/10.1186/s12989-018-0240-xhttps://doi.org/10.1186/s12989-018-0240-x.
T. Ku, B. Li, R. Gao et al., NF-kappaB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Part Fibre Toxicol 14(1), 34-52 (2017). https://doi.org/10.1186/s12989-017-0215-3https://doi.org/10.1186/s12989-017-0215-3.
B. Carney, S. Kossatz, T. Reiner, Molecular Imaging of PARP. Journal of Nuclear Medicine 58(7),1025-1030 (2017). https://doi.org/10.2967/jnumed.117.189936https://doi.org/10.2967/jnumed.117.189936
K.H. Jung, K.H. Lee, Molecular imaging in the era of personalized medicine. J Pathol Transl Med. 49(1), 43-58 (2013). https://doi.org/10.4132/jptm.2014.10.24https://doi.org/10.4132/jptm.2014.10.24.
B.S. Jang, MicroSPECT and MicroPET Imaging of Small Animals for Drug Development. Toxicological Research 29(1), 1-6 (2013). https://doi.org/10.5487/TR.2013.29.1.001https://doi.org/10.5487/TR.2013.29.1.001.
D. R. Osborne, C. Kuntner, S. Berr et al., Guidance for Efficient Small Animal Imaging Quality Control. Molecular Imaging & Biology 19(4), 485-498 (2017). https://doi.org/10.1007/s11307-016-1012-3https://doi.org/10.1007/s11307-016-1012-3
M. D'Huyvetter, J. De Vos, C. Xavier et al., 131I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clinical Cancer Research An Official Journal of the American Association for Cancer Research 23(21), 6616-6628 (2017). https://doi.org/10.1158/1078-0432.CCR-17-0310https://doi.org/10.1158/1078-0432.CCR-17-0310
J. Sheng, X.Y. Wang, J. Yan et al., Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. Journal of Materials Chemistry B 6(48), 8163-8169. (2018). https://doi.org/10.1039/c8tb02817fhttps://doi.org/10.1039/c8tb02817f
G.Y. Song, Z.J. Li, K.H. Li et al., SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties. Nanomaterials 7(3), 53-62 (2017). https://doi.org/10.3390/nano7030053https://doi.org/10.3390/nano7030053
C.S. Thompson, M. Zou, Nanostructured PVP/SiO2 antireflective coating for solar panel applications. Nanotechnology IEEE, 768-771 (2013) https://doi.org/10.1109/NANO.2013.6721058https://doi.org/10.1109/NANO.2013.6721058
Hatch G, Slade R, Boykin E, et al. Correlation of effects of inhaled versus intratracheally injected metals on susceptiblity to respiratory infection in mice. The American review of respiratory disease 124, 167-173 (1981). https://doi.org/10.1164/arrd.1981.124.2.167https://doi.org/10.1164/arrd.1981.124.2.167.
Dewaraja YK, Ljungberg M, Green AJ et al., MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. Journal of Nuclear Medicine 54(12), 2182-2188(2013). https://doi.org/10.2967/jnumed.113.122390https://doi.org/10.2967/jnumed.113.122390.
Miller JG, Gillette JS, Manczak EM, et al. Fine Particle Air Pollution and Physiological Reactivity to Social Stress in Adolescence: The Moderating Role of Anxiety and Depression. Psychosomatic Medicine 81 (7), 641-648 (2019). https://doi.org/10.1097/PSY.0000000000000714https://doi.org/10.1097/PSY.0000000000000714.
Ljungman PL, Mittleman MA. Ambient Air Pollution and Stroke. Stroke 45 (12), 3734-3741 (2014). https://doi.org/10.1161/STROKEAHA.114.003130https://doi.org/10.1161/STROKEAHA.114.003130.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution