1.Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
Corresponding author, nourihan.farrag@eaea.org.eg
Scan for full text
Nourihan S. Farrag, Abeer M. Amin. Preliminary evaluation of the radiotherapeutic efficacy of 131I-atorvastatin in rats with hepatocellular carcinoma. [J]. Nuclear Science and Techniques 31(11):106(2020)
Nourihan S. Farrag, Abeer M. Amin. Preliminary evaluation of the radiotherapeutic efficacy of 131I-atorvastatin in rats with hepatocellular carcinoma. [J]. Nuclear Science and Techniques 31(11):106(2020) DOI: 10.1007/s41365-020-00819-1.
As one of the most critical types of cancer, hepatocellular carcinoma (HCC) affects many people worldwide. This study demonstrated the prospective use of atorvastatin, a drug that inhibits the mevalonate pathway, causing hypolipidemia, as a carrier to deliver the iodine-131 (,131,I) isotope to liver tissues for HCC radiotherapy. The atorvastatin radioiodination method was optimized for utilizing the ,131,I isotope. The radiochemical quality and the ,in vitro, stability of the generated [,131,I]atorvastatin were investigated. In addition, the biodistribution experiments of [,131,I]atorvastatin were evaluated in both normal and HCC-induced rat models. [,131,I]atorvastatin was produced at a maximum radiochemical yield of 86.7 ± 0.49%. The [,131,I]atorvastatin solution purified via high-performance liquid chromatography showed good,in vitro, stability for 12 h after tagging. Biodistribution analyses revealed remarkable liver targeting capacity of [,131,I]atorvastatin and good localization of,131,I in liver tissues. Overall, the encouraging biochemical profile and histopathological findings have been reported, and preliminary investigations on the possible use of [,131,I]atorvastatin as a radiotracer and its impact on HCC radiotherapy in rats show promise.
Key words Hepatocellular carcinoma[131I]AtorvastatinBiodistributionRadiotherapy
T. Nakajima, Y. Ninomiya and M. Nenoi, Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci, 19(12): 3855 (2018). https://doi.org/10.3390/ijms19123855https://doi.org/10.3390/ijms19123855
J. Seong, Challenge and hope in radiotherapy of hepatocellular carcinoma. Yonsei Med J, 50(5): 601-612 (2009). https://doi.org/10.3349/ymj.2009.50.5.601https://doi.org/10.3349/ymj.2009.50.5.601
A. Mukherjee, S. Subramanian, R. Ambade, et al., Development of Semiautomated Module for Preparation of (131)I Labeled Lipiodol for Liver Cancer Therapy. Cancer Biother Radiopharm, 32(1): 33-37 (2017). https://doi.org/10.1089/cbr.2016.2088https://doi.org/10.1089/cbr.2016.2088
F. X. Bosch, J. Ribes, R. Cleries, et al., Epidemiology of hepatocellular carcinoma. Clin Liver Dis, 9(2): 191-211 (2005) https://doi.org/10.1016/j.cld.2004.12.009https://doi.org/10.1016/j.cld.2004.12.009
S. Parikh and D. Hyman, Hepatocellular cancer: a guide for the internist. Am J Med, 120(3): 194-202 (2007). https://doi.org/10.1016/j.amjmed.2006.11.020https://doi.org/10.1016/j.amjmed.2006.11.020
M. A. Kalogeridi, A. Zygogianni, G. Kyrgias, et al., Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J Hepatol, 7(1): 101-112 (2015). https://doi.org/10.4254/wjh.v7.i1.101https://doi.org/10.4254/wjh.v7.i1.101
K. Klutz, M. J. Willhauck, N. Wunderlich, et al., Sodium iodide symporter (NIS)-mediated radionuclide ((131)I, (188)Re) therapy of liver cancer after transcriptionally targeted intratumoral in vivo NIS gene delivery. Hum Gene Ther, 22(11): 1403-1412 (2011). https://doi.org/10.1089/hum.2010.158https://doi.org/10.1089/hum.2010.158
J. E. Dancey, F. A. Shepherd, K. Paul, et al., Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med, 41(10): 1673-1681 (2000). PMID: 11037997
J. F. Geschwind, R. Salem, B. I. Carr, et al., Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology, 127(5 Suppl 1): S194-S205 (2004). https://doi.org/10.1053/j.gastro.2004.09.034https://doi.org/10.1053/j.gastro.2004.09.034
E. Dervis, A. Yurt Kilcar, E. I. Medine, et al., In Vitro Incorporation of Radioiodinated Eugenol on Adenocarcinoma Cell Lines (Caco2, MCF7, and PC3). Cancer Biother Radiopharm, 32(3): 75-81 (2017). https://doi.org/10.1089/cbr.2017.2181https://doi.org/10.1089/cbr.2017.2181
S. Order, T. Pajak, S. Leibel, et al., A randomized prospective trial comparing full dose chemotherapy to 131I antiferritin: an RTOG study. Int J Radiat Oncol Biol Phys, 20(5): 953-963 (1991). https://doi.org/10.1016/0360-3016(91)90191-6https://doi.org/10.1016/0360-3016(91)90191-6
J. L. Raoul, D. Guyader, J. F. Bretagne, et al., Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma. Hepatology, 26(5): 1156-1161 (1997). https://doi.org/10.1002/hep.510260511https://doi.org/10.1002/hep.510260511
J. K. Kim, K. H. Han, J. T. Lee, et al., Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res, 12(2): 543-548 (2006). https://doi.org/10.1158/1078-0432.CCR-05-1730https://doi.org/10.1158/1078-0432.CCR-05-1730
J. H. Sohn, H. J. Choi, J. T. Lee, et al., Phase II study of transarterial holmium-166-chitosan complex treatment in patients with a single, large hepatocellular carcinoma. Oncology, 76(1): 1-9 (2009). https://doi.org/10.1159/000173735https://doi.org/10.1159/000173735
M. Thapar, M. W. Russo and H. L. Bonkovsky, Statins and liver injury. Gastroenterol Hepatol (N Y), 9(9): 605-606 (2013). PMID: 24729773
D. Pradelli, D. Soranna, L. Scotti, et al., Statins and primary liver cancer: a meta-analysis of observational studies. Eur J Cancer Prev, 22(3): 229-234 (2013). https://doi.org/10.1097/CEJ.0b013e328358761ahttps://doi.org/10.1097/CEJ.0b013e328358761a
C. Stancu and A. Sima, Statins: mechanism of action and effects. J Cell Mol Med, 5(4): 378-387 (2001). https://doi.org/10.1111/j.1582-4934.2001.tb00172.xhttps://doi.org/10.1111/j.1582-4934.2001.tb00172.x
B. Parada, F. Reis, A. Pinto, et al., Chemopreventive efficacy of Atorvastatin against nitrosamine-induced rat bladder cancer: antioxidant, anti-proliferative and anti-inflammatory properties. Int J Mol Sci, 13(7): 8482-8499 (2012). https://doi.org/10.3390/ijms13078482https://doi.org/10.3390/ijms13078482
M. F. Demierre, P. D. Higgins, S. B. Gruber, et al., Statins and cancer prevention. Nat Rev Cancer, 5(12): 930-942 (2005). https://doi.org/10.1038/nrc1751https://doi.org/10.1038/nrc1751
A. J. Brown, Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol, 34(3): 135-141 (2007). https://doi.org/10.1111/j.1440-1681.2007.04565.xhttps://doi.org/10.1111/j.1440-1681.2007.04565.x
A. Sassano and L. C. Platanias, Statins in tumor suppression. Cancer Lett, 260(1-2): 11-19 (2008). https://doi.org/10.1016/j.canlet.2007.11.036https://doi.org/10.1016/j.canlet.2007.11.036
J. K. Liao and U. Laufs, Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol, 45: 89-118 (2005). https://doi.org/10.1146/annurev.pharmtox.45.120403.095748https://doi.org/10.1146/annurev.pharmtox.45.120403.095748
U. Schonbeck and P. Libby, Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation, 109(21 Suppl 1): II18-II26 (2004). https://doi.org/10.1161/01.CIR.0000129505.34151.23https://doi.org/10.1161/01.CIR.0000129505.34151.23
S. Wassmann, U. Laufs, K. Muller, et al., Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol, 22(2): 300-305 (2002). https://doi.org/10.1161/hq0202.104081https://doi.org/10.1161/hq0202.104081
K. Tanaka, M. Honda and T. Takabatake, Anti-apoptotic effect of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac myocytes through protein kinase C activation. Clin Exp Pharmacol Physiol, 31(5-6): 360-364 (2004). https://doi.org/10.1111/j.1440-1681.2004.04010.xhttps://doi.org/10.1111/j.1440-1681.2004.04010.x
N. S. Farrag, H. A. Abdel-Halim and O. A. Abdel Moamen, Facile radiolabeling optimization process via design of experiments and an intelligent optimization algorithm: Application for omeprazole radioiodination. J Labelled Comp Radiopharm, 62(6): 280-287 (2019). https://doi.org/10.1002/jlcr.3734https://doi.org/10.1002/jlcr.3734
A. M. Amin, N. S. Farrag and A. AbdEl-Bary, Iodine-125-Chlorambucil as Possible Radioanticancer for Diagnosis and Therapy of cancer: preparation and tissue distribution British Journal of Pharmaceutical Research, 4(15): 1873-1885 (2014). https://doi.org/10.9734/BJPR/2014/10520https://doi.org/10.9734/BJPR/2014/10520
N. S. Farrag, H. A. El-Sabagh, A. M. Al-Mahallawi, et al., Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int J Pharm, 529(1-2): 123-133 (2017). https://doi.org/10.1016/j.ijpharm.2017.06.044https://doi.org/10.1016/j.ijpharm.2017.06.044
N. S. Jaiprakash, A. Mohammed, Z. Zahid, et al., Development and validation of RP-HPLC method for determination of Atorvastatin calcium and Nicotinic acid in combined tablet dosage form. Journal of Saudi Chemical Society, 20: S328-S333 (2016). https://doi.org/10.1016/j.jscs.2012.12.005https://doi.org/10.1016/j.jscs.2012.12.005
S. Jayakumar, A. Madankumar, S. Asokkumar, et al., Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem, 360(1-2): 51-60 (2012). https://doi.org/10.1007/s11010-011-1043-7https://doi.org/10.1007/s11010-011-1043-7
K. B. Dakshayani, P. Subramanian, T. Manivasagam, et al., Melatonin modulates the oxidant-antioxidant imbalance during N-nitrosodiethylamine induced hepatocarcinogenesis in rats. J Pharm Pharm Sci, 8(2): 316-321 (2005). PMID: 16124941
P. Subramanian, S. Mirunalini, K. B. Dakshayani, et al., Prevention by melatonin of hepatocarcinogenesis in rats injected with N-nitrosodiethylamine. J Pineal Res, 43(3): 305-312 (2007). https://doi.org/10.1111/j.1600-079X.2007.00478.xhttps://doi.org/10.1111/j.1600-079X.2007.00478.x
A. Sarkar, R. Basak, A. Bishayee, et al., Beta-carotene inhibits rat liver chromosomal aberrations and DNA chain break after a single injection of diethylnitrosamine. Br J Cancer, 76(7): 855-861 (1997). https://doi.org/10.1038/bjc.1997.475https://doi.org/10.1038/bjc.1997.475.
A. E. H. Faried, M. S. Hanaa, E. El-Sayed, et al., Therapeutic efficacy of licorice and/or cisplatin against diethylnitrosamine and carbon tetrachloride-induced hepatocellular carcinoma in rats Journal of American Science, 12(1): 10-19 (2016). https://doi.org/10.7537/marsjas120116.02https://doi.org/10.7537/marsjas120116.02.
R. I. Al-Wabli, T. M. Sakr, M. A. Khedr, et al., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m. Chem Cent J, 10: 73 (2016). https://doi.org/10.1186/s13065-016-0220-xhttps://doi.org/10.1186/s13065-016-0220-x.
E. M. Moustapha, G. Mohammed, R. F. Zeinab, et al., Organic Synthesis of Iodinated Atorvastatin via Nucleophilic Substitution Reaction: Experimental and DFT Studies. Current Organic Chemistry, 22: 2017-2022 (2018). https://doi.org/10.2174/1385272822666180913111819https://doi.org/10.2174/1385272822666180913111819.
M. A. Motaleb, M. T. El-Kolaly, H. M. Rashed, et al., Novel radioiodinated sibutramine and fluoxetine as models for brain imaging. J Radioanal Nucl Chem, 2011. 289: 915-921. https://doi.org/10.1007/s10967-011-1182-zhttps://doi.org/10.1007/s10967-011-1182-z.
A. M. Amin, S. A. Kandil, M. E. Abdel-Hameed, et al., Purification and biological evaluation of radioiodinated clozapine as possible brain imaging agent. J Radioanal Nucl Chem 304: 837-844 (2015). https://doi.org/10.1007/s10967-014-3894-3https://doi.org/10.1007/s10967-014-3894-3.
M. Erfani, S. Sharifzadeh, A. Doroudi, et al., Labeling and evaluation of 99mTc-tricarbonylmeloxicam as a preferential COX-2 inhibitor for inflammation imaging. J. Label Compd. Radiopharm 59: 284-290 (2016). https://doi.org/10.1002/jlcr.3396https://doi.org/10.1002/jlcr.3396.
K. M. El-Azony, A. A. El-Mohty, H. M. Killa, et al., An investigation of the 125I-radioiodination of colchicine for medical purposes J. Label Compd. Radiopharm. 52:1-5 (2008). https://doi.org/10.1002/jlcr.1556https://doi.org/10.1002/jlcr.1556.
K. A. Simon-Giavarotti, L. Giavarotti, L. F. Gomes, et al., Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic Res, 36(10): 1033-1039 (2002). https://doi.org/10.1080/1071576021000028280https://doi.org/10.1080/1071576021000028280.
X. Yi, S. Yu and Y. Bao, Alpha-fetoprotein-L3 in hepatocellular carcinoma: a meta-analysis. Clin Chim Acta, 425: 212-220 (2013). https://doi.org/10.1016/j.cca.2013.08.005https://doi.org/10.1016/j.cca.2013.08.005
D. Li, T. Mallory and S. Satomura, AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta, 313(1-2): 15-19 (2001). https://doi.org/10.1016/S0009-8981(01)00644-1https://doi.org/10.1016/S0009-8981(01)00644-1
K. Tajul Arifin, S. Sulaiman, S. Md Saad, et al., Elevation of tumour markers TGF-beta, M2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris. BMC Cancer, 17(1): 879 (2017). https://doi.org/10.1186/s12885-017-3883-3https://doi.org/10.1186/s12885-017-3883-3.
M. d. Kazi, H. Mahmudul, T. Nasrin, et al., Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed Food Science and Human Wellness 7: 77-82 (2018). https://doi.org/10.1016/j.fshw.2017.12.002https://doi.org/10.1016/j.fshw.2017.12.002
T. Y. Luo, Y. H. Shih, C. Y. Chen, et al., Evaluating the potential of (188)Re-ECD/lipiodol as a therapeutic radiopharmaceutical by intratumoral injection for hepatoma treatment. Cancer Biother Radiopharm, 24(5): 535-541 (2009). https://doi.org/10.1089/cbr.2008.0603https://doi.org/10.1089/cbr.2008.0603.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution