1.Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201204, China
2.CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
lina02@sari.ac.cn
bianfg@sari.ac.cn
Scan for full text
Yi-Wen Li, Guang-Feng Liu, Hong-Jin Wu, et al. BL19U2: Small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF. [J]. Nuclear Science and Techniques 31(12):117(2020)
Yi-Wen Li, Guang-Feng Liu, Hong-Jin Wu, et al. BL19U2: Small-angle X-ray scattering beamline for biological macromolecules in solution at SSRF. [J]. Nuclear Science and Techniques 31(12):117(2020) DOI: 10.1007/s41365-020-00825-3.
The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution. The beamline has been officially opened to users in March 2015, and since then, a series of technological innovations has been developed to optimize beamline performance, thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering. BL19U2 is ideal for the high-throughput screening of weakly scattered proteins, protein assemblies, nucleic acids, inorganic nanomaterials, and organic drug molecules. This paper describes the design and overview of the BL19U2 beamline. Versatile sample environments at the experimental station and some recent scientific highlights are presented.
Shanghai Synchrotron Radiation FacilityBiological small-angle X-ray scatteringHigh-throughput screeningBiological macromolecules
M.H.J. Koch, P. Vachette, D.I. Svergun, Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q.Rev.Biophys. 36(2), 147-227 (2003). https://doi.org/10.1017/S0033583503003871https://doi.org/10.1017/S0033583503003871
M.A. Graewert, D.I. Svergun, Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr. Opin. Struct. Biol. 23(5),748-754(2013). https://doi.org/10.1016/j.sbi.2013.06.007https://doi.org/10.1016/j.sbi.2013.06.007
J. Lipfert, S. Doniach, Small-angle X-ray scattering from RNA, proteins, and protein complexes.Annu.Rev.Biophys.Biomol.Struct.36,307-327(2007). https://doi.org/10.1146/annurev.biophys.36.040306.132655https://doi.org/10.1146/annurev.biophys.36.040306.132655
B.N. Chaudhuri, Emerging applications of small angle solution scattering in structural biology. Protein. Sci. 24(3),267-276(2015). https://doi.org/10.1002/pro.2624https://doi.org/10.1002/pro.2624
I.L. Smolsky, P. Liu, M. Niebuhr et al., Biological small-angle x-ray scattering facility at the Stanford synchrotron radiation laboratory. J. Appl. Cryst.40, s453-s458 (2007). https://doi.org/10.1107/S0021889807009624https://doi.org/10.1107/S0021889807009624
P. Pernot, A. Round, R. Barrett et al., Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. J. Synchrotron. Rad. 20, 660-664 (2013). https://doi.org/10.1107/S0909049513010431https://doi.org/10.1107/S0909049513010431
A.S. Acerbo, M.J. Cook, R.E. Gillilan, Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution. J. Synchrotron. Rad. 22, 180-186 (2015). https://doi.org/10.1107/S1600577514020360https://doi.org/10.1107/S1600577514020360
C.E. Blanchet, A. Spilotros, F. Schwemmer et al., Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Cryst. 48, 431-443(2015). https://doi.org/10.1107/S160057671500254Xhttps://doi.org/10.1107/S160057671500254X
N. Li, X.H. Li, Y.Z. Wang et al., The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution. J. Appl. Cryst. 49,1428-1432 (2016). https://doi.org/10.1107/S160057671601195Xhttps://doi.org/10.1107/S160057671601195X
G.F. Liu, Y.W. Li, H.J. Wu et al., Upgraded SSRF BL19U2 beamline for small-angle X-ray scattering of biological macromolecules in solution. J. Appl. Cryst. 51,1633-1640 (2018). https://doi.org/10.1107/S160057671801316Xhttps://doi.org/10.1107/S160057671801316X
W.Z. Zhang, J.C. Tang, S.S. Wang et al., The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech. 30(11):170 (2019). https://doi.org/10.1007/s41365-019-0683-2https://doi.org/10.1007/s41365-019-0683-2
Y.J. Wang, H. Zhou, E. Onuk et al., What can we learn from wide-angle solution scattering? Biological small angle scattering: techniques, strategies and tips. Advances in Experimental Med. Biology 1009: 131-147(2017). https://doi.org/10.1007/978-981-10-6038-0_8https://doi.org/10.1007/978-981-10-6038-0_8
P.C. Yin, B. Wu, T. Li et al. Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters. J. Am. Chem. Soc. 138(33):10623-10629(2016). https://doi.org/10.1021/jacs.6b05882https://doi.org/10.1021/jacs.6b05882
P. Zhou, C.X. Hong, Y.Z. Wang et al., The control system and the data acquisition system of biological small angle X-ray scattering beamline. Nucl. Tech. 39(9):090101(2016).https://doi.org/10.11889/j.0253-3219.2016.hjs.39.090101https://doi.org/10.11889/j.0253-3219.2016.hjs.39.090101 (in Chinese)
P. Liu, Y.N. Zhou, Q.R. Mi et al., EPICS-based data acquisition system on beamlines at SSRF. Nucl. Tech. 33, 415-419 (2010). (in Chinese)
C.X. Hong, P. Zhou, Y.W. Li et al., An automatic solution-sample-changing peristaltic device at biological small angle X-ray scattering beamline. Nucl. Tech. 39(1):010102(2016).https://doi.org/10.11889/j.0253-3219.2016.hjs.39.010102https://doi.org/10.11889/j.0253-3219.2016.hjs.39.010102 (in Chinese)
A. Grishaev, Sample preparation,data collection,and preliminary data analysis in biomolecular solution X-ray scattering. Current protocols in protein science. 17:14 (2012). https://doi.org/10.1002/0471140864.ps1714s70https://doi.org/10.1002/0471140864.ps1714s70
S. Skou, R.E. Gillilan, N. Ando, Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat. Protoc. 9(7): 1727-1739 (2014). https://doi.org/10.1038/nprot.2014.116https://doi.org/10.1038/nprot.2014.116
C.M. Jeffries, M.A. Graewert, C.E. Blanchet et al., Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat. Protoc. 11(11): 2122-2153(2016). https://doi.org/10.1038/nprot.2016.113https://doi.org/10.1038/nprot.2016.113
L.W. Kwok, I. Shcherbakova, J.S. Lamb et al., Concordant exploration of the kinetics of RNA folding from global and local perspectives. J. Mol. Biol. 355(2): 282-293(2006). https://doi.org/10.1016/j.jmb.2005.10.070https://doi.org/10.1016/j.jmb.2005.10.070
J. Lamb, L. Kwok, X.Y. Qiu et al., Reconstructing three-dimensional shape envelopes from time-resolved small-angle X-ray scattering data. J. Appl. Cryst. 41:1046-1052(2008). https://doi.org/10.1107/S0021889808028264https://doi.org/10.1107/S0021889808028264
L. Pollack, M.W. Tate, N.C. Darnton et al., Compactness of the denatured state of a fast-folding protein measured by submillilsecond small-angle x-ray scattering. Proc. Natl. Acad. Sci. 96(18):10115-10117 (1999). https://doi.org/10.1073/pnas.96.18.10115https://doi.org/10.1073/pnas.96.18.10115
M.A. Ansari, K.Y. Kim, K. Anwar et al., A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J. Micromech. Microeng. 20(5): 055007 (2010). https://doi.org/10.1088/0960-1317/20/5/055007https://doi.org/10.1088/0960-1317/20/5/055007
Y.W. Li, F.G. Bian, J. Wang, A novel heating area design of temperature-jump microfluidic chip for synchrotron radiation solution X-ray scattering. Nucl. Sci. Tech. 27(4): 92 (2016). https://doi.org/10.1007/s41365-016-0083-9https://doi.org/10.1007/s41365-016-0083-9
H.J. Wu, Y.W. Li, G.F. Liu et al., SAS-cam: a program for automatic processing and analysis of small-angle scattering data. J. Appl. Cryst. 53: 1147-1153 (2020). https://doi.org/10.1107/S1600576720008985https://doi.org/10.1107/S1600576720008985
J.B. Hopkins, R.E. Gillilan, S. Skou, BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Cryst. 50:1545-1553 (2017). https://doi.org/10.1107/S1600576717011438https://doi.org/10.1107/S1600576717011438
M.V. Petoukhov, D. Franke, A.V. Shkumatov et al., New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 45: 342-350 (2012). https://doi.org/10.1107/S0021889812007662https://doi.org/10.1107/S0021889812007662
Z.L. Ouyang, F. Zheng, J.Y. Chew et al., Deciphering the activation and recognition mechanisms of Staphylococcus aureus response regulator ArlR. Nucleic Acids. Res. 47(21):11418-11429 (2019). https://doi.org/10.1093/nar/gkz891https://doi.org/10.1093/nar/gkz891
J.B. Huang, X. Dong, Z. Gong et al., Solution structure of the RNA recognition domain of METLL3-METTL14 N6-methyladenosine methyltransferase. Protein Cell. 10(4):272-284(2019). https://doi.org/10.1007/s13238-018-0518-7https://doi.org/10.1007/s13238-018-0518-7
R.J. Cai, I.R. Price, F. Ding et al., ATP/ADP modulates gp16-pRNA conformational change in the Phi29 DNA packaging motor. Nucleic Acids. Res. 47(18):9818-9828 (2019). https://doi.org/10.1093/nar/gkz692https://doi.org/10.1093/nar/gkz692
Z.J. Chen, Z.Y. Li, X.J. Hu et al., Structural basis of human helicase DDX21 in RNA binding, unwinding, and antiviral signal activation. Adv. Sci. 7(14):2000532 (2020). https://doi.org/10.1002/advs.202000532https://doi.org/10.1002/advs.202000532
Y.P. Zhang, Y.K. Zhang, Z.Y. Liu et al., Long non-coding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution. EMBO Rep. 20(11) e47016 (2019). https://doi.org/10.15252/embr.201847016https://doi.org/10.15252/embr.201847016
F. Gao, Y.Y. Xia, D. Chen et al., Insights on the structure of caseinate particles based on surfactants-induced dissociation. Food Hydrocolloid 104: 105766 (2020). https://doi.org/10.1016/j.foodhyd.2020.105766https://doi.org/10.1016/j.foodhyd.2020.105766
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution