1.Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia 32511, Egypt
2.MERADD, Instrumentation Control & Computer Complex (ICCC), PARAS Building, 18-KM Multan Road, P.O. Chung, Lahore, Pakistan
3.Department of Physics, College of Education for Pure Sciences, University of Mosul, 41001 Mosul, Iraq
Corresponding author e-mail: ushtaq_phy8@yahoo.com, mushtaq_phy@uomosul.edu.iq, mushtaqphy8@gmail.com
Scan for full text
E.M. Awad, M.A. Rana, Mushtaq Abed Al-Jubbori. Bulk etch rates of CR-39 at high etchant concentrations: Diffusion-limited etching. [J]. Nuclear Science and Techniques 31(12):118(2020)
E.M. Awad, M.A. Rana, Mushtaq Abed Al-Jubbori. Bulk etch rates of CR-39 at high etchant concentrations: Diffusion-limited etching. [J]. Nuclear Science and Techniques 31(12):118(2020) DOI: 10.1007/s41365-020-00830-6.
Systematic CR-39 bulk etching experiments were conducted over a wide range of concentrations (2-30 N) of NaOH based etchant. Critical analysis and a deep discussion of the results are presented. A comprehensive nuclear track chemical etching data bank was developed. Three regimes of CR-39 bulk etching were identified. Regime I spans etchant concentrations from 2 to 12 N. Regime II spans concentrations from 12 to 25 N. We call this the dynamic bulk etching regime. Regime III is for concentrations greater than 25 N. In this regime, the bulk etch rate is saturated with respect to the etchant concentration. This classification is discussed and explained. The role of ethanol in NaOH-based etchants is explored and discussed. A parameter called the "reduced bulk etch rate" is defined here, which helps in analyzing the dependence of bulk etching on the amount of ethanol in the etchant. The bulk etch rate shows a natural logarithmic dependence on the density of ethanol in the etchant.
CR-39 detectorEthanolBulk etch rateReduced bulk etch rateDiffusion-limited etchingConcentration-limited etching
S.A. Gorbunov, R.A. Rymzhanov, N.I. Starkov, et al., A model of chemical etching of olivine in the vicinity of the trajectory of a swift heavy ion. Nucl. Instr. Methods B 365, 656 (2015). https://doi.org/10.1016/j.nimb.2015.09.074https://doi.org/10.1016/j.nimb.2015.09.074
M. Fromm, S. Kodaira, T. Kusumoto et al., Role of intermediate species in the formation of ion tracks in PADC: A review. Polymer Degrad. Stab. 161, 213 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.028https://doi.org/10.1016/j.polymdegradstab.2019.01.028
M. A. Al-Jubbori, Semi empirical equation for the calculation of the track diameter of alpha particles in CR-39 as a function of etching temperature. Raf. J. Sci., 25:120-126, 2014.
V.R. Oganesyan, V. V. Trofimov, S. Gaillard et al., Investigation of the response of thin CR-39 polymer foils irradiated with light ions. Nucl. Instr. Methods B 236, 289 (2005). https://doi.org/10.1016/j.nimb.2005.03.257https://doi.org/10.1016/j.nimb.2005.03.257
T. Yamauchi, Studies on the nuclear tracks in CR-39 plastics. Radiat. Meas. 36, 73 (2003). https://doi.org/10.1016/S1350-4487(03)00099-4https://doi.org/10.1016/S1350-4487(03)00099-4
T. Kusumoto, Y. Mori, M. Kanasaki et al., Radiation chemical yields for the losses of typical functional groups in PADC films for high energy protons registered as unetchable tracks. Radiat. Meas. 87, 35 (2016). https://doi.org/10.1016/j.radmeas.2016.01.029https://doi.org/10.1016/j.radmeas.2016.01.029
M.A. Rana, Systematic measurements of etch induction time for nuclear tracks: Startup of etching and the multiplex effect. Nucl. Instr. Methods A 618, 176 (2010) https://doi.org/10.1016/j.nima.2010.02.108https://doi.org/10.1016/j.nima.2010.02.108
E.M. Awad, Multi-hit model on CR-39, DAM-ADC and LR-115 SSNTDs: Statistical and comparative study. Radiat. Meas. 105, 70 (2017). https://doi.org/10.1016/j.radmeas.2017.08.001https://doi.org/10.1016/j.radmeas.2017.08.001
M.A. Rana, I.E. Qureshi, Studies of CR-39 etch rates. Nucl. Instr. Methods B 198, 129 (2002). https://doi.org/10.1016/S0168-583X(02)01526-4https://doi.org/10.1016/S0168-583X(02)01526-4
V. Ditlov, Formation model of bulk etching rate for polymer detectors. Radiat. Meas. 40, 240 (2005). https://doi.org/10.1016/j.radmeas.2005.06.010https://doi.org/10.1016/j.radmeas.2005.06.010
D. Hermsdorf, M. Hunger, S. Starke et al., Measurement of bulk etch rates for poly-allyl-diglycol carbonate (PADC) and cellulose nitrate in a broad range of concentration and temperature of NaOH etching solution. Radiat. Meas. 42, 1 (2007). https://doi.org/10.1016/j.radmeas.2006.06.009https://doi.org/10.1016/j.radmeas.2006.06.009
E.M. Awad, V.A. Ditlov, M. Fromm et al., Description of the bulk etching rate of CR-39 by an extended Arrhenius-like law in increased intervalls of temperature and etchant concentration, Radiat. Meas. 44, 813 (2009). https://doi.org/10.1016/j.radmeas.2009.10.087https://doi.org/10.1016/j.radmeas.2009.10.087
V.A. Ditlov, E.M. Awad, D. Hermsdorf et al., Interpretation of the bulk etching process in LR-115 detectors by the many-hit model, Radiat. Meas. 43, S82 (2008). https://doi.org/10.1016/j.radmeas.2008.03.071https://doi.org/10.1016/j.radmeas.2008.03.071
Y. Zhang, L. Liu, H. Wang, et al. Primary yields of protons measured using CR-39 in laser-induced deuteron-deuteron fusion reactions. Nucl. Sci. Tech. 31, 62 (2020). https://doi.org/10.1007/s41365-020-00769-8https://doi.org/10.1007/s41365-020-00769-8
B.G. Cartwright, E.K. Shirk, P.B. Price, A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Instr. Methods 153, 457 (1978). https://doi.org/10.1016/0029-554X(78)90989-8https://doi.org/10.1016/0029-554X(78)90989-8
Y. He, X. Xi, S. Guo, et al. Calibration of CR-39 solid-state track detectors for study of laser-driven nuclear reactions. Nucl. Sci. Tech. 31, 42 (2020). https://doi.org/10.1007/s41365-020-0749-1https://doi.org/10.1007/s41365-020-0749-1
Matiullah , S. Rehman, W. Zaman, Discovery of new etchants for CR-39 detector. Radiat. Meas. 39, 337 (2005). https://doi.org/10.1016/j.radmeas.2004.06.012https://doi.org/10.1016/j.radmeas.2004.06.012
Y. Zhang, H. Wang, Y. Ma, et al. Energy calibration of a CR-39 nuclear-track detector irradiated by charged particles. Nucl. Sci. Tech. 30, 87 (2019). https://doi.org/10.1007/s41365-019-0619-xhttps://doi.org/10.1007/s41365-019-0619-x
A.H. Ashry, A.M. Abdalla, Y.S. Rammah et al., The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector, Radiat. Phys. Chem. 101, 41 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.037https://doi.org/10.1016/j.radphyschem.2014.03.037
M.A. Rana, CR-39 nuclear track detector: An experimental guide. Nucl. Instr. Methods A 910, 121 (2018). https://doi.org/10.1016/j.nima.2018.08.077https://doi.org/10.1016/j.nima.2018.08.077
E.M. Awad, Sameh Hassan, Eman Bebers et al., Bulk etch rate for PADC CR-39 at extended concentration range of NaOH mixed with ethanol and etchant viscosity study. Nucl. Instr. Methods B 464, 45 (2020). https://doi.org/10.1016/j.nimb.2019.12.003https://doi.org/10.1016/j.nimb.2019.12.003
E.M. Awad, M.A. Rana, Bulk etch rates of CR-39 nuclear track detectors over a wide range of etchant (NaOH aqueous solution + ethanol) concentrations: measurements and modeling. RADIATION EFFECTS & DEFECTS IN SOLIDS https://doi.org/10.1080/10420150.2020.1810038https://doi.org/10.1080/10420150.2020.1810038
Y.D. He, Can track-etch detector CR-39 record low-velocity GUT magnetic monopoles? Phys. Rev. D 57, 3182 (1998). https://doi.org/10.1103/PhysRevD.57.3182https://doi.org/10.1103/PhysRevD.57.3182
F. Kar, N. Asrslan, Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity-molecular weight relationship. Carbohyd. Polymers 40, 277 (1999). https://doi.org/10.1016/S0144-8617(99)00062-4https://doi.org/10.1016/S0144-8617(99)00062-4
H. Yanagie, K. Ogura, T. Matsumoto et al., Neutron capture autoradiographic determination of 10B distributions and concentrations in biological samples for boron neutron capture therapy. Nucl. Instr. Methods A 424, 122 (1999). https://doi.org/10.1016/S0168-9002(98)01284-4https://doi.org/10.1016/S0168-9002(98)01284-4
E.M. Awad, Sameh Hassan, Eman Bebers, Y.S. Rammah, Strong etching investigation on PADC CR-39 as a thick track membrane with deep depth profile study. Radiation Physics and Chemistry 177 (2020) 109104 https://doi.org/10.1016/j.radphyschem.2020.109104https://doi.org/10.1016/j.radphyschem.2020.109104
Y. Nishiura, S. Inoue, S. Kojima et al., Detection of alpha particles from 7Li (p, α) 4He and 19F (p, α) 16O reactions induced by laser-accelerated protons using CR-39 with potassium hydroxide-ethanol-water etching solution. Rev. Sci. Instr. 90, 083307 (2019). https://doi.org/10.1063/1.5098863https://doi.org/10.1063/1.5098863
R. Ogawara, T. Kusumoto, T. Konishi et al., Detection of alpha and 7Li particles from 10B(n, α)7Li reactions using a combination of CR-39 nuclear track detector and potassium hydroxide-ethanol-water solution in accelerator-based neutron fields. Nucl. Instr. Methods B 467, 9 (2020).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution