1.Department of Radiation Oncology, National Cancer Center /National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
Corresponding author. E-mail address: dai_jianrong@163.com
Scan for full text
Chuan-Meng Niu, Ming-Hui Li, Jian-Rong Dai. Cage-like radiotherapy system for noncoplanar radiotherapy. [J]. Nuclear Science and Techniques 32(2):12(2021)
Chuan-Meng Niu, Ming-Hui Li, Jian-Rong Dai. Cage-like radiotherapy system for noncoplanar radiotherapy. [J]. Nuclear Science and Techniques 32(2):12(2021) DOI: 10.1007/s41365-021-00848-4.
The aim of this study was to design a cage-like radiotherapy system (CRTS) to further promote the clinical application of noncoplanar radiotherapy. The CRTS comprises two stands, two O-rings, several arc girders, an X-ray head, an imaging subsystem, and a treatment couch. The X-ray head rotates with O-rings around the patient’s body and slides along the arc girder. Compared with the C-arm linear accelerator (C-Linac), the clinically available spatial irradiation angle ranges (SIARs) of the CRTS for the head, chest, and abdomen were 33%, 63.6%, and 62.6% larger, respectively. Moreover, according to a preliminary planning comparison based on the dose distribution simulation method, the CRTS achieved much better protection of normal tissue than the C-Linac. Furthermore, the CRTS enabled accurate noncoplanar irradiation without movement of the body being irradiated, allowed automatic control of the movements of different parts without risk of collisions, and provided continuous radiation over an angle that considerably exceeded a full turn. These advantages make CRTS very promising for noncoplanar radiotherapy.
Radiotherapy systemNoncoplanar radiotherapySpatial irradiation angle rangeSpherical surface area
P. Dong, P. Lee, D. Ruan, et al. 4π non-coplanar liver SBRT: a novel delivery technique. Int. J. Radiat. Oncol. Biol. Phys. 85,1360-1366 (2013). doi: 10.1016/j.ijrobp.2012.09.028http://doi.org/10.1016/j.ijrobp.2012.09.028
D. Nguye, P. Dong, T. Long, et al. Integral dose investigation of noncoplanar treatment beam geometries in radiotherapy. Med. Phy. 41, 011905.1-8 (2014). doi: 10.1118/1.4845055http://doi.org/10.1118/1.4845055
K. Woods, D. Nguyen, A. Tran, et al. Viability of Noncoplanar VMAT for liver SBRT compared with coplanar VMAT and beam orientation optimized 4π IMRT. Adv. Radiat. Oncol. 1, 67-75 (2016). doi: 10.1016/j.adro.2015.12.004http://doi.org/10.1016/j.adro.2015.12.004
Y. Yang, P.P. Zhang, L. Happersett et al. Choreographing couch and collimator in volumetric modulated arc therapy. Int. J. Radiat. Oncol. Biol. Phys. 80, 1238-1247 (2011). doi: 10.1016/j.ijrobp.2010.10.016http://doi.org/10.1016/j.ijrobp.2010.10.016
D. Nguyen, J. Rwigema, V. Yu, et al. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat. Oncol. 41, 264-265 (2014). doi: 10.1016/j.ijrobp.2014.05.527http://doi.org/10.1016/j.ijrobp.2014.05.527
J. C.M. Rwigema, D. Nguyen, D. Heron, et al. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: Potential to improve tumor control and late toxicity. Int. J. Radiat. Oncol. Biol. Phys. 91, 401-409 (2015). doi: 10.1016/j.ijrobp.2014.09.043http://doi.org/10.1016/j.ijrobp.2014.09.043
E. Wilda, M. Bangert, S. Nill, et al. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time. Med. Phys. 42(5), 2157-2168 (2015). doi: 10.1118/1.4914863http://doi.org/10.1118/1.4914863
P. Dong, P. Lee, D. Ruan, et al. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 86, 407-413 (2013). doi: 10.1016/j.ijrobp.2013.02.002http://doi.org/10.1016/j.ijrobp.2013.02.002
B. Fahimian, V. Yu, K. Horst, et al. Trajectory modulated prone breast irradiation: A LINAC-based technique combining intensity modulated delivery and motion of the couch. Radiother. Oncol. 109, 475-481 (2013). doi: 10.1016/j.radonc.2013.10.031http://doi.org/10.1016/j.radonc.2013.10.031
P. Dong, D. Nguyen, D. Ruan, et al. Feasibility of prostate robotic radiation therapy on conventional C-arm linacs. Pract. Radiat. Oncol. 4, 254-260 (2014). doi: 10.1016/j.prro.2013.10.009http://doi.org/10.1016/j.prro.2013.10.009
A. Tran, J. Zhang, K. Woods, et al. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiat. Oncol. 12, 10 (2017). doi: 10.1186/s13014-016-0761-0http://doi.org/10.1186/s13014-016-0761-0
L. Rossi, S. Breedveld, B.J. Heijmen, et al. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT. Phy. in Med. & Biol. 57, 5441-58 (2012). doi: 10.1088/0031-9155/57/17/5441http://doi.org/10.1088/0031-9155/57/17/5441
L. Rossi, S. Breedveld, S. Aluwini, et al. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 762-770 (2015). doi: 10.1016/j.ijrobp.2015.03.013http://doi.org/10.1016/j.ijrobp.2015.03.013
V.Y. Yu, A. Tran, D. Nguyen, et al. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Med. Phys. 42, 6457-6467 (2015). doi: 10.1118/1.4932631http://doi.org/10.1118/1.4932631
T.D. Mann, N.P. Ploquin, W.R. Gill, et al. Development and clinical implementation of eclipse scripting based automated patient-specific collision avoidance software. J. Appl. Clin. Med. Phys. 20, 12-19 (2019). doi: 10.1002/acm2.12673http://doi.org/10.1002/acm2.12673
S. J. Becker. Collision indicator charts for gantry-couch position combinations for Varian linacs. J. of Appl. Clin. Med. Phys. 12, 3405-3411 (2011). doi: 10.1120/jacmp.v12i3.3405http://doi.org/10.1120/jacmp.v12i3.3405
C. Hua, J. Chang, K. Yenice, et al. A practical approach to prevent gantry-couch collision for linac-based radiosurgery. Med. Phys. 31, 2128-2134 (2004). doi: 10.1118/1.1764391http://doi.org/10.1118/1.1764391
K. Nakagawa, Y. Aoki, M. Tago, et al. Dynamic conical conformal radiotherapy using a C-arm-mounted accelerator: dose distribution and clinical application. Int. J. Radiat. Oncol. Biol. Phys. 56, 287-295 (2003). doi: 10.1016/s0360-3016(03)00087-7http://doi.org/10.1016/s0360-3016(03)00087-7
C.L. Ong, W.F. Verbakel, J.P. Cuijpers, et al. Treatment of large stage I-II lung tumors using stereotactic body radiotherapy (SBRT): planning considerations and early toxicity. Radiother. Oncol. 97, 431-436 (2010). doi: 10.1016/j.radonc.2010.10.003http://doi.org/10.1016/j.radonc.2010.10.003
S. Derycke, B.V. Duyse, W.D. Gersem, et al. Non-coplanar beam intensity modulation allows large dose escalation in stage III lung cancer. Radiother. Oncol. 45, 253-261 (1997). doi: 10.1016/S0167-8140(97)00132-1http://doi.org/10.1016/S0167-8140(97)00132-1
J.Y.C. Cheung, K.N. Yu. Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies. Med. Phys. 33, 2500-2505 (2006). doi: 10.1118/1.2207313http://doi.org/10.1118/1.2207313
J.S. Kuo, C. Yu, Z. Petrovich, et al. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery. 53, 785-789 (2003). doi: 10.1227/01.neu.0000316282.07124.31http://doi.org/10.1227/01.neu.0000316282.07124.31
Y. Kamino, K. Takayama, M. Kokubo, et al. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int. J. Radiat. Oncol. Biol. Phys. 66, 271-278 (2006). doi: 10.1016/j.ijrobp.2006.04.044http://doi.org/10.1016/j.ijrobp.2006.04.044
G.A. Weidlich, M.B. Schneider, J.R. Adler. Characterization of a Novel Revolving Radiation Collimator. Cureus. 10, (2018). doi: 10.7759/cureus.2146http://doi.org/10.7759/cureus.2146
D. Papp, T. Bortfeld, J. Unkelbach. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories. Phys. Med. Biol. 60, 5179-5198 (2015). doi: 10.1088/0031-9155/60/13/5179http://doi.org/10.1088/0031-9155/60/13/5179
B. Wilson, K. Otto, E. Gete, et al. A simple and robust trajectory-based stereotactic radiosurgery treatment. Med. Phys. 44, 240-248 (2017). doi: 10.1002/mp.12036http://doi.org/10.1002/mp.12036
G. Smyth, P.M. Evans, J.C. Bamber, et al. Non-coplanar trajectories to improve organ at risk sparing in volumetric modulated arc therapy for primary brain tumors. Radiother. Oncol. 121, 124-131 (2016). doi: 10.1016/j.radonc.2016.07.014http://doi.org/10.1016/j.radonc.2016.07.014
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution