1.Chengdu University of Technology, Chengdu 610059, China
2.Sichuan University of Science and Engineering, Zigong 643000, China
3.Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu 610059, China
Corresponding author, yjb@cdut.edu.cn
Scan for full text
Rui Li, Jian-Bo Yang, Xian-Guo Tuo, et al. Unfolding neutron spectra from water-pumping-injection multilayered concentric sphere neutron spectrometer using self-adaptive differential evolution algorithm. [J]. Nuclear Science and Techniques 32(3):26(2021)
Rui Li, Jian-Bo Yang, Xian-Guo Tuo, et al. Unfolding neutron spectra from water-pumping-injection multilayered concentric sphere neutron spectrometer using self-adaptive differential evolution algorithm. [J]. Nuclear Science and Techniques 32(3):26(2021) DOI: 10.1007/s41365-021-00864-4.
A self-adaptive differential evolution neutron spectrum unfolding algorithm (SDENUA) is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer (WMNS). Specifically, the neutron fluence bounds are estimated to accelerate the algorithm convergence, and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10,-6, to avoid unnecessary calculations. Furthermore, the crossover probability and scaling factor are self-adaptively controlled. FLUKA Monte Carlo is used to simulate the readings of the WMNS under (1) a spectrum of Cf-252 and (2) its spectrum after being moderated, (3) a spectrum used for boron neutron capture therapy, and (4) a reactor spectrum. Subsequently, the measured neutron counts is unfolded using the SDENUA. The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA, which does not require complex parameter tuning or an a priori default spectrum. The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1, and the errors of the final results calculated using the SDENUA are less than 12%. The established SDENUA can be used to unfold spectra from the WMNS.
Water-pumping-injection multilayered spectrometerNeutron spectrum unfoldingDifferential evolution algorithmSelf-Adaptive control
R.L. Bramblett, R.I. Ewing, T.W. Bonner, A new type of neutron spectrometer. Nucl. Instrum. Methods 9, 1-12 (1960). doi: 10.1016/0029-554X(60)90043-4http://doi.org/10.1016/0029-554X(60)90043-4
R. Méndez-Villafañe, M.A.S. Lacerda, X. Campo et al., Neutron spectra from Neutron Standards Laboratory (LPN/CIEMAT) sources with two Bonner sphere spectrometers. Radiat. Phys. Chem. 155, 97-100 (2019). doi: 10.1016/j.radphyschem.2018.06.015http://doi.org/10.1016/j.radphyschem.2018.06.015
H. Ueda, H. Tanaka, Y. Sakurai, The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator. Appl. Radiat. Isot. 104, 25-28 (2015). doi: 10.1016/J.APRADISO.2015.06.020http://doi.org/10.1016/J.APRADISO.2015.06.020
L. Zhang, H.W Yu, W.B. Jia et al., Study on the influence of formation factors on spatial distribution of D-D induced γ-ray source. Nucl. Tech. 42, 010501 (2019). doi: 10.11889/j.0253-3219.2019.hjs.42.010501http://doi.org/10.11889/j.0253-3219.2019.hjs.42.010501 (in Chinese)
H. Park, J. Kim, K.O.O. Choi, Neutron spectrum measurement at the workplace of nuclear power plant with bonner sphere spectrometer. J. Nucl. Sci. Technol. 45, 298-301 (2008). doi: 10.1080/00223131.2008.10875847http://doi.org/10.1080/00223131.2008.10875847
R. Shi, X.G. Tuo, H.L. Li et al., 239Pu alpha spectrum analysis based on PIPS detector response function and variations with vacuum and distance. Nucl. Sci. Tech. 28, 4 (2017). doi: 10.1007/s41365-016-0163-xhttp://doi.org/10.1007/s41365-016-0163-x
R. Shi, X.G. Tuo, H.L. Li et al., Unfolding analysis of LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. Nucl. Sci. Tech. 29, 1 (2018). doi: 10.1007/s41365-017-0340-6http://doi.org/10.1007/s41365-017-0340-6
J.B. Yang, X.G. Tuo, Y. Cheng et al., U.S. Patent US10656292 B2, 19 May 2020
K. Chang, Y. Cheng, J.B. Yang et al., Research on the Artificial Neural Network Unfolding Method for the Water-Pumping-Injection Multi-Homocentric Sphere Neutron Spectrometer. J. Korean Phys. Soc. 74, 542-546 (2019). doi: 10.3938/jkps.74.542http://doi.org/10.3938/jkps.74.542
J.B. Yang, X.G. Tuo, H. Huang et al., CN. Patent ZL201610264803.7, 8 Aug 2018 (in Chinese)
X.G. Tuo, F.L. Liu, Q.B Wang et al., Research and application of neutron resonance in medium-heavy nuclei. Nucl. Tech. 43, 100201 (2020). doi: 10.11889/j.0253-3219.2020.hjs.43.100201http://doi.org/10.11889/j.0253-3219.2020.hjs.43.100201 (in Chinese)
C. Cheng, W.B. Jia, D.Q. Hei et al., Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method. Nucl. Sci. Tech. 29, 109 (2018). doi: 10.1007/s41365-018-0447-4http://doi.org/10.1007/s41365-018-0447-4
J.B. Yang, X.G. Tuo, R. Li et al., CN. Patent ZL201810497605.4, 3 Jan 2020 (in Chinese)
D.W. Freeman, D.R. Edwards, A.E. Bolon, Genetic algorithms - a new technique for solving the neutron spectrum unfolding problem. Nucl. Instrum. Meth. A 425, 549-576 (1999). doi: 10.1016/S0168-9002(98)01427-2http://doi.org/10.1016/S0168-9002(98)01427-2
A. Ferrari, P. Sala, A. Fasso et al., Fluka: a multi-particle transport code. Technical Report (2005). doi: 10.2172/877507http://doi.org/10.2172/877507
K. Chang, Dissertation (The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, 2019) (in Chinese)
M. Reginatto, P. Goldhagen, MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data. Health Phys. 77, 579-583 (1999). doi: 10.1097/00004032-199911000-00012http://doi.org/10.1097/00004032-199911000-00012
M. Matzke, Unfolding of Pulse Height Spectra: The HEPRO Program System. Technical Report PTB-N-19 (1994) http://cds.cern.ch/record/275528
M. Reginatto, The 'multi-Channel' Unfolding Programs in the UMG Package: MXD_FC31 and IQU_FC31, and GRV_FC31. Technical Report (2002)
H. Shahabinejad, S.A.A. Hosseini, M. Sohrabpour, A new neutron energy spectrum unfolding code using a two steps genetic algorithm. Nucl. Instrum. Meth. A 811, 82-93 (2016). doi: 10.1016/j.nima.2015.12.028http://doi.org/10.1016/j.nima.2015.12.028
H. Shahabinejad, M. Sohrabpour, A novel neutron energy spectrum unfolding code using particle swarm optimization. Radiat. Phys. Chem. 136, 9-16 (2017). doi: 10.1016/j.radphyschem.2017.03.033http://doi.org/10.1016/j.radphyschem.2017.03.033
S.M.T. Hoang, G.M. Sun, H.N. Tran, Enhancing neutron spectral results based on the combination of genetic algorithm and activation method. J. Radioanal. Nucl. Ch. 318, 631-639 (2018). doi: 10.1007/s10967-018-6155-zhttp://doi.org/10.1007/s10967-018-6155-z
H.L. Zheng, X.G. Tuo, S.M. Peng et al., Determination of Gamma point source efficiency based on a back-propagation neural network. Nucl. Sci. Tech. 29, 61 (2018). doi: 10.1007/s41365-018-0410-4http://doi.org/10.1007/s41365-018-0410-4
International Atomic Energy Agency, Compendium of neutron spectra and detector responses for radiation protection purposes: supplement to technical reports series. Technical Report No. 403 (2001)
R. Storn, K. Price, Minimizing the real functions of the ICEC'96 contest by differential evolution, Paper Presented at the IEEE International Conference on Evolutionary Computation (Nagoya, Japan 20-22 May 1996) doi: 10.1109/ICEC.1996.542711http://doi.org/10.1109/ICEC.1996.542711
X. Wang, H. Zhang, Z. Wu et al., Development of spectrum unfolding code for multi-sphere neutron spectrometer using genetic algorithms. Nucl. Sci. Tech. 25, S010503 (2014). doi: 10.13538/j.1001-8042/nst.25.S010503http://doi.org/10.13538/j.1001-8042/nst.25.S010503
S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13, 526-553 (2009). doi: 10.1109/TEVC.2008.2009457http://doi.org/10.1109/TEVC.2008.2009457
J. Zhang, A.C. Sanderson, JADE: Adaptive Differential Evolution With Optional External Archive. IEEE T. Evolut. Comput. 13, 945-958 (2009). doi: 10.1109/TEVC.2009.2014613http://doi.org/10.1109/TEVC.2009.2014613
M.G.H. Omran, A. Salman, A. P. Engelbrecht, in International conference on computational and information science, ed. by Y. Hao, J.M. Liu, Y.P. Wang et al. (Springer, Berlin, 2005), pp. 192-199 doi: 10.1007/11596448_28http://doi.org/10.1007/11596448_28
S. Ghosh, S. Das, S. Roy et al. A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. 182, 199-219 (2012). doi: 10.1016/j.ins.2011.08.014http://doi.org/10.1016/j.ins.2011.08.014
V. Suman, P.K. Sarkar, Unfolding an under-determined neutron spectrum using genetic algorithm based Monte Carlo. Indian J. Pure Ap. Phy. 50, 501-504 (2012).
R. Gämperle, S.D. Miller, P. Koumoutsakos, in Advances in intelligent systems, fuzzy systems, evolutionary computation, ed. by A. Grmela, N.E. Mastorakis (WSEAS Press, Greece, 2002), pp. 293-298
National Institute of Standards and Technology. Evaluating uncertainty components: Type A, https://physics.nist.gov/cuu/Uncertainty/typea.html; 2020 [accessed 7 December 2020].
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution