1.Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.Hefei University of Technology, Hefei 230009, China
Corresponding author: caohr@ipp.ac.cn
Scan for full text
Ying-Ying Zheng, Zi-Han Zhang, Qiang Li, et al. Design of an energetic particle radiation diagnostic spectroscopy system based on national core chips and Qt on Linux in EAST. [J]. Nuclear Science and Techniques 32(7):68(2021)
Ying-Ying Zheng, Zi-Han Zhang, Qiang Li, et al. Design of an energetic particle radiation diagnostic spectroscopy system based on national core chips and Qt on Linux in EAST. [J]. Nuclear Science and Techniques 32(7):68(2021) DOI: 10.1007/s41365-021-00906-x.
Energetic particle radiation diagnoses mainly detect the particles (such as neutrons, gamma rays, hard X-rays, and escaping electrons) that are radiated in the discharge process of the experimental advanced superconducting tokamak device to characterize the operating state of the plasma in real time. The upgrading of these diagnoses requires new instruments based on national (here, "national" means developed and produced by a Chinese company) core chips and open-source software with advanced digitization, a high sampling rate, and a high time resolution. The new spectroscopy system designed in this study adopts the national field-programmable gate array (FPGA) and an analog to digital converter as the core chip, and it is developed using Qt on Linux. The communication between the FPGA and embedded controller occurs via a high-speed peripheral component interconnect eXtension for instrument express protocol with a direct memory access mode. On this basis, the time resolution of the system is improved from 2 ms to 1 ms, the maximum channel address is increased to 4096, and the sampling rate is increased from 10 Msps to 80 Msps. Calibration experiments of the spectroscopy system with ,152,Eu and ,137,Cs sources demonstrate that the best energy resolution is 0.27% and the measurement error is less than ±0.5 keV.
Spectroscopy systemNational chipQtEnergetic particle radiationExperimental advanced superconducting tokamak
L. Tao, C.D. Hu, Y.L. Xie, Thermodynamic analysis and simulation for gas baffle entrance collimator of EAST-NBI system based on thermo-fluid coupled method. Nucl. Sci. Tech. 29, 1(2018). doi: 10.1007/s41365-017-0349-xhttp://doi.org/10.1007/s41365-017-0349-x
Z. Chen, Y.P. Zhao, G. Chen et al., Design and implementation of power and phase feedback control system for ICRH on EAST. Nucl. Sci. Tech. 29, 2(2018). doi: 10.1007/s41365-018-0362-8http://doi.org/10.1007/s41365-018-0362-8
B.N. Wan, G.S. Xu, Advances in experimental research towards high confinement and steady state operation on the Experimental Advanced Superconducting Tokamak (in Chinese). Sci Sin-Phys Mech Astron. 49, 025205 (2019). doi: 10.1360/SSPMA2018-00233http://doi.org/10.1360/SSPMA2018-00233
X. Gong, A.M. Garofalo, J. Huang et al., Integrated operation of steady-state long-pulse H-mode in Experimental Advanced Superconducting Tokamak. Nuclear Fusion. 59, 086030 (2019). doi: 10.1088/1741-4326/ab1c7bhttp://doi.org/10.1088/1741-4326/ab1c7b
L.Q. Xu, E.Z. Li, T.F. Zhou et al., Observation of helical m/n = 1/1 saturated steady mode in EAST pure electron heating scenario with q0 ≼ 1. Nuclear Fusion. 60, 106027 (2020). doi: 10.1088/1741-4326/abadabhttp://doi.org/10.1088/1741-4326/abadab
Z.X. Cui, X. Li, S.B. Shu, J.R. Luo, et al., Calculation of the heat flux in the lower divertor target plate using an infrared camera diagnostic system on the Experimental Advanced Superconducting Tokamak. Nucl. Sci. Tech. 30, 6(2019). doi: 10.1007/s41365-019-0625-zhttp://doi.org/10.1007/s41365-019-0625-z
S.B. Shu, C.M. Yu, C. Liu, et al., Improved plasma position detection method in EAST Tokamak using fast CCD camera. Nucl. Sci. Tech. 30, 2(2019). doi: 10.1007/s41365-019-0549-7http://doi.org/10.1007/s41365-019-0549-7
G.Q. Zhong, H.R. Cao, L.Q. Hu et al., The behavior of neutron emissions during ICRF minority heating of plasma at EAST. Plasma Physics and Controlled Fusion. 58, 075013 (2016). doi: 10.1088/0741-3335/58/7/075013http://doi.org/10.1088/0741-3335/58/7/075013
K. Li, L.Q. Hu, G.Q. Zhong et al., Calibration of the gamma-ray measurement procedure in the EAST neutron activation system. Fusion Engineering and Design, 148, 111278 (2019). doi: 10.1016/j.fusengdes.2019.111278http://doi.org/10.1016/j.fusengdes.2019.111278
R.X. Zhang, L.Q. Hu, K. Li et al., Preliminary investigation of the shutdown radioactivity for EAST based on gamma ray spectrometry. Fusion Engineering and Design. 161, 112039 (2020). doi: 10.1016/j.fusengdes.2020.112039http://doi.org/10.1016/j.fusengdes.2020.112039
H.R. Cao, H.X. Wang, Y.Y. Zheng et al., Development of Digital Multi-channel and Time-division Pulse Height Analyzer Based on PXIE Bus for Hard X-ray Diagnostic in EAST. Instruments and Experimental Techniques. 63,4 (2020). doi: 10.1134/S002044122004003Xhttp://doi.org/10.1134/S002044122004003X
W. D. Wang, H.R. Cao, J. Cao et al., A study of beryllium moderator thickness for a fission chamber with fast neutron measurements. Nucl. Sci. Tech. 28, 9 (2017). doi: 10.1007/s41365-017-0283-yhttp://doi.org/10.1007/s41365-017-0283-y
R.J. Zhu, X. Zhou, Z.H. Liu, et al., High-precision and wide-range real-time neutron flux monitor system through multipoint linear calibration. Nucl. Sci. Tech. 31, 9(2020). doi: 10.1007/s41365-020-00798-3http://doi.org/10.1007/s41365-020-00798-3
R. C. Pereira, A. M. Fernandes, A. Neto et al., ATCA fast data acquisition and processing system for JET gamma-ray cameras upgrade diagnostic. 2009 16th IEEE-NPSS Real Time Conference. 2009. doi: 10.1109/RTC.2009.5321624http://doi.org/10.1109/RTC.2009.5321624.
Qt Corporation's website: https://www.qt.io/https://www.qt.io/
L. Hu; H. Cao; J. Zhao et al., Design and Test of Irradiation-Related Components in ITER Radial X-Ray Camera. IEEE Transactions on Nuclear Science. 65,9 (2018). doi: 10.1109/TNS.2018.2849410http://doi.org/10.1109/TNS.2018.2849410
X.L. Sheng, M.Y. Ye, L.Q. Hu et al., Preliminary design of I&C for ITER radial X-ray camera system based on CODAC. Fusion Engineering and Design.143, (2019). doi: 10.1016/j.fusengdes.2019.03.121http://doi.org/10.1016/j.fusengdes.2019.03.121
F. Wang, C. Chen, S. Li et al., Study of Fast Data Access Based on Hierarchical Storage for EAST Tokamak. 2016 IEEE-NPSS Real Time Conference (RT). 2016. doi: 10.1109/RTC.2016.7543147http://doi.org/10.1109/RTC.2016.7543147
G.M. Liu, P. Makijarvi, N. Pons, The ITER CODAC network design. Fusion Engineering and Design. 130, (2018). doi: 10.1016/j.fusengdes.2018.02.072http://doi.org/10.1016/j.fusengdes.2018.02.072.
C. C. Li, Z. S. Ji, F. Wang et al., The Design of Real-Time Communication System Based on RFM and MRG Real Time for EAST. IEEE Transactions on Plasma Science. 46, 2(2018). doi: 10.1109/TPS.2018.2829212http://doi.org/10.1109/TPS.2018.2829212
S. Zhang, J. Ge, B. Zhang et al., Cooling circle design and testing for ITER radial X-ray camera. Fusion Engineering and Design. 125, (2017). doi: 10.1016/j.fusengdes.2017.10.016http://doi.org/10.1016/j.fusengdes.2017.10.016
S. Zhang, X.H. Gao, X.Y. Hu et al., Electromagnetic Shielding Box Design of Radial X-Ray Camera Electronics. Journal of Fusion Energy. 39, (2020). doi: 10.1007/s10894-020-00244-7http://doi.org/10.1007/s10894-020-00244-7
L.Y. Niu, H.R. Cao, K. Xu et al., Neutronic analysis of ITER radial x-ray camera. Plasma Science and Technology. 21, 025601 (2019). doi: 10.1088/2058-6272/aaeba5http://doi.org/10.1088/2058-6272/aaeba5
YA16D80-125 Handbook (in Chinese): https://pro283d9a-pic24.websiteonline.cn/upload/YA16D80-125.pdfhttps://pro283d9a-pic24.websiteonline.cn/upload/YA16D80-125.pdf
JFM7K325T Handbook: https://download.csdn.net/download/Tang_Chuanlin/12742666?utm_source=bbsseohttps://download.csdn.net/download/Tang_Chuanlin/12742666?utm_source=bbsseo
XC7K325T Handbook: https://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdfhttps://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
The comparison of JFM7K325T and XC7K325T:https://download.csdn.net/download/ADHEREVICTOR/12467090?utm_medium=distribute.pc_relevant_download.none-task-download-BlogCommendFromBaidu-1.nonecase&dist_request_id=&depth_1-utm_source=distribute.pc_relevant_download.none-task-download-BlogCommendFromBaidu-1.nonecasehttps://download.csdn.net/download/ADHEREVICTOR/12467090?utm_medium=distribute.pc_relevant_download.none-task-download-BlogCommendFromBaidu-1.nonecase&dist_request_id=&depth_1-utm_source=distribute.pc_relevant_download.none-task-download-BlogCommendFromBaidu-1.nonecase
AD9269 Handbook: https://www.analog.com/en/products/ad9269.html#product-overviewhttps://www.analog.com/en/products/ad9269.html#product-overview
Vivado Design Suite User Guide (2021): https://china.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1118-vivado-creating-packaging-custom-ip.pdfhttps://china.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1118-vivado-creating-packaging-custom-ip.pdf
Shanghai Fudan Microelectronics Group Corporation's website: http://eng.fmsh.com/http://eng.fmsh.com/
N. Cruz, B. Santos, A. Fernandes et al., The Design and Performance of the Real-Time Software Architecture for the ITER Radial Neutron Camera. IEEE Transactions on Nuclear Science. 66,7 (2019). doi: 10.1109/TNS.2019.2907056http://doi.org/10.1109/TNS.2019.2907056.
S.Y. He, L.S. Huang, G. Gao et al., Design of Real-Time Control in Poloidal Field Power Supply Based on Finite-State Machine. IEEE Transactions on Plasma Science. 47, 4(2019). doi: 10.1109/TPS.2019.2904796http://doi.org/10.1109/TPS.2019.2904796.
B. Santos, A. Fernandes, R.C. Pereira et al., Control and data acquisition software upgrade for JET gamma-ray diagnostics. Fusion Engineering and Design. 128, 2018. doi: 10.1016/j.fusengdes.2018.01.064http://doi.org/10.1016/j.fusengdes.2018.01.064.
S. Alexander, K. Vladimir, N. Rais et al., Segmented HPGe Detector for Nuclear Reactions Research. IEEE Transactions on Nuclear Science. 68, 1 (2021). doi: 10.1109/TNS.2020.3037336http://doi.org/10.1109/TNS.2020.3037336
DT5730 from CAEN: https://www.caen.it/products/dt5730/https://www.caen.it/products/dt5730/
X. Xu, J.Q. Liu, J.B. Lu et al., Recognition of Spectrum in 152Eu Source and Analysis of Sum Peak Characteristics (in Chinese). Joural of Isotopes. 31, 1 (2018). doi: 10.7538/tws.2017.youxian.008http://doi.org/10.7538/tws.2017.youxian.008
Z. Ren, X. Wang, Y.Z. Niu et al., Study of decay characteristic by measurement of energy spectrum of β decay and internal conversion electrons of 137Cs (in Chinese). College Physics. 36, 2 (2017). doi: 10.16854/j.cnki.1000-0712.2017.02.016http://doi.org/10.16854/j.cnki.1000-0712.2017.02.016
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution