1.Department of Physics, Kogi State University, P.M.B 1008, Anyigba, Nigeria
2.Department of Physics, Benue State University, Makurdi, Nigeria
I. Ochala, ojoagbamiisaiah1234@gmail.com
Scan for full text
I. Ochala, J. O. Fiase. B3Y-FETAL effective interaction in the folding analysis of elastic scattering of 16O + 16O. [J]. Nuclear Science and Techniques 32(8):81(2021)
I. Ochala, J. O. Fiase. B3Y-FETAL effective interaction in the folding analysis of elastic scattering of 16O + 16O. [J]. Nuclear Science and Techniques 32(8):81(2021) DOI: 10.1007/s41365-021-00920-z.
In this paper, a new M3Y-type effective nucleon-nucleon interaction,derived based on the lowest order constrained variational approach (LOCV) and termed B3Y-Fetal, has been used in DDM3Y1, BDM3Y1, BDM3Y2, and BDM3Y3 density-dependent versions in a heavy ion (HI) optical potential based on four types of a real folded potential and a phenomenological Woods-Saxon imaginary potential to study the elastic scattering of the ,16,O+,16,O nuclear system within the framework of the optical model (OM) by computing the associated differential cross-sections at various incident energies. The results of the folding analyses have shown the DDB3Y1-Fetal and BDB3Y1-Fetal, out of the four folded potentials, give a reasonably better description of the elastic data of the nuclear system. These best-fit folded potentials are followed, in performance, by the BDB3Y2-Fetal, with the BDB3Y3-Fetal potential coming last. This performance trend was also demonstrated by the optical potentials based on the M3Y-Reid interaction. Furthermore, the best-fit folded potentials, renormalized by a factor ,N,R, of approximately 0.9, have been shown to reproduce the energy dependence of the real optical potential for ,16,O scattering found in previous optical model analyses creditably well. In excellent agreement with previous works, they have also been identified in this work to belong to the family of deep refractive potentials because they have been able to reproduce and consistently describe the evolution of Airy-like structures, at large scattering angles, observed in the ,16,O scattering data at different energies. Finally, a comparison of the performances of B3Y-Fetal and M3Y-Reid effective interactions undertaken in this work has shown impressive agreement between them.
B3Y-fetalFolding analysisElastic scatteringOptical modelIncident energies
G.R. Satchler and W. G. Love. Folding Model Potentials from Realistic Interactions for Heavy-ion Scattering. Physics Reports (Review Section of Physics Letters). 55, 90081-4(1979). doi: 10.1016/0370-1573(79)90081-4http://doi.org/10.1016/0370-1573(79)90081-4.
D. T. Khoa, V. W. Oertzen, H.G. Bohlen et al., Study of Diffractive and Refractive Structure in the Elastic 16O+16O Scattering at Incident Energies Ranging from 124 to 1120 MeV. Nuclear Physics A. 672, 00856-8 (2000). doi: 10.1016/S0375-9474(99)00856-8http://doi.org/10.1016/S0375-9474(99)00856-8.
M.E. Brandan and G.R. Satchler. The Interaction between Light Heavy Ions and What It Tells Us. Physics Reports. 285, 00048-8 (1997). doi: 10.1016/S0370-1573(96)00048-8http://doi.org/10.1016/S0370-1573(96)00048-8.
D.T. Khoa, E. Khan, G. Colo et al., Folding Model Analysis of Elastic and Inelastic Proton Scattering on Sulphur Isotopes. Nuclear Physics A. 706, 00866-7 (2002). doi: 10.1016/S0375-9474(02)00866-7http://doi.org/10.1016/S0375-9474(02)00866-7.
M. Katsuma, Y. Sakuragi, S. Okabe et al., Coupled-Channels Study of the Nuclear Rainbow Phenomenon for the 12C+ 16O System. Progress of Theoretical Physics. 107, 377 (2002). doi: 10.1143/PTP.107.377http://doi.org/10.1143/PTP.107.377.
S. M. Wong. Introductory Nuclear Physics. 2ed. Toronto: Prentice-Hall International, Inc. (2004). doi: 10.1002/9783527617906http://doi.org/10.1002/9783527617906.
D. T. Khoa, V. W. Oertzen and H. G. Bohlen. Double-Folding Model for Heavy-ion Optical Potential: Revised and Applied to Study 12C and 16O Elastic Scattering. Physical Review C. 49, 3 (1994). doi: 1103/PhysRevC.49http://doi.org/1103/PhysRevC.49.
D.T. Khoa, G.R. Satchler and W. V. Oertzen. Nuclear Incompressibility and Density Dependent NN Interactions in the Folding Model for Nucleus Potentials. Physical Review C. 56, (1997). doi: 10.1103/PhysRevC.56http://doi.org/10.1103/PhysRevC.56.
G. R. Satchler. Introduction to Nuclear Reactions 2ed. Macmillan Education Ltd. London. 20532-8 (1990). doi: 10.1007/978-1-349-20532-8http://doi.org/10.1007/978-1-349-20532-8.
J. O. Fiase, K.R.S. Devan and A. Hosaka. Mass Dependence of M3Y-Type Interactions and the Effects of Tensor Correlations. Physical Review C. 66, 014004 (2002).doi: 10.1103/PhysRevC.66.014004http://doi.org/10.1103/PhysRevC.66.014004.
I. Ochala and J. O. Fiase. Symmetric Nuclear Matter Calculations - A Variational Approach. Physical Review C. 98, 064001 (2018). doi: 10.1103/PhysRevC.98.064001http://doi.org/10.1103/PhysRevC.98.064001.
D. T. Khoa and V. W. Oertzen. Refractive Alpha-Nucleus Scattering; A Probe for the Incompressibility of Cold Nuclear Matter. Physics Letters B. 342, 01393-Q (1995). doi: 10.1016/0370-2693(94)01393-Qhttp://doi.org/10.1016/0370-2693(94)01393-Q.
P.E. Hodgson. The Nucleon Optical Model. World Scientific Publishing Co. Ltd. London. 2317 (1994). doi: 10.1142/2317http://doi.org/10.1142/2317.
S. Hamada, N. Burtebayev, N. Amangeldi et al., Phenomenological and Semi-microscopic Analysis for 16O and 12C Elastically Scattering on the Nucleus of 16O and 12C at Energies Near Coulomb Barrier. Journal of Physics: Conference Series. 381, 012130 (2012). doi: 10.1088/1742-6596/381/1/012130http://doi.org/10.1088/1742-6596/381/1/012130.
G. Bertsch, J. Borsowicz, H. McManus et al., Interactions for Inelastic Scattering Derived from Realistic Potentials. Nuclear Physics A. 284, 90392-X (1977). doi: 10.1016/0375-9474(77)90392-Xhttp://doi.org/10.1016/0375-9474(77)90392-X.
I. Gontcharn, D. J. Hinde, M. Dasgupta et al., Double Folding Nucleus-Nucleus Potential Applied to Heavy-Ion Fusion Reactions. Physical Review C. 69, 02461 (2004). doi: 10.1103/PhysRevC.69.02461http://doi.org/10.1103/PhysRevC.69.02461.
S. Shlomo and D. H. Youngblood. Nuclear Matter Incompressibility and Giant Monopole Resonance. Nuclear Physics A. 569, 90121-X (1994). doi: 10.1016/0375-9474(94)90121-Xhttp://doi.org/10.1016/0375-9474(94)90121-X.
G. Colo and N. V. Giai. Theoretical Understanding of the Nuclear Matter Incompressibility: Where Do We Stand? Nuclear Physics A. 731, 014 (2004). doi: 10.1016/j.nuclphysa.2003.11.014http://doi.org/10.1016/j.nuclphysa.2003.11.014.
K.C. Panda, B.C. Sahu and J. Bhoi. Accuracy of Simple Folding Model in the Calculation of the Direct Part of Real α-α Interaction Potential. PRAMANA Journal of Physics. 82, 0737-2 (2014). doi: 10.1007/s12043-014-0737-2http://doi.org/10.1007/s12043-014-0737-2.
L. Trache, A. Azhari, H. L. Clark et al., Optical Model Potential Involving Loosely Bound p-Shell Nuclei Around 10 MeV/ nucleon. Physical Review C. 61, 024612 (2000). doi: 10.1103/PhysRevC.61.024612http://doi.org/10.1103/PhysRevC.61.024612.
F. A. Brieva and J. R. Rook. Nucleon-Nucleus Optical Model (1). Nuclear Matter Approach. Nuclear Physics A.291, 90322-0 (1977). doi: 10.1016/0375-9474(77)90322-0http://doi.org/10.1016/0375-9474(77)90322-0.
E. Stiliaris, H. G. Bohlen, P. Frobrich et al., Nuclear Rainbow Structures in the Elastic Scattering of 16O on 16O at ELab = 350 MeV. Phys. Lett. B. 223, 91604-3 (1989). doi: 10.1016/0370-2693(89)91604-3http://doi.org/10.1016/0370-2693(89)91604-3.
H. G. Bohlen, E. Stiliaris, B. Gebauer et al., Refractive Scattering and Reactions, Comparison of Two Systems:16O + 16O and 20Ne + 12C Z. Phys. A. 346, BF01306079 (1993). doi: 10.1007/BF01306079http://doi.org/10.1007/BF01306079.
G. Bartnitzky, A. Blazevic, H. G. Bohlen et al., Model-Unrestricted Nucleus-Nucleus Scattering Potentials from Measurement and Analysis of 16O+16O Scattering Phys. Lett. B. 365, 01292-3 (1996). doi: 10.1016/0370-2693(95)01292-3http://doi.org/10.1016/0370-2693(95)01292-3.
Y. Sugiyama, Y. Tomita, H. Ikezoe et al., Observation of Airy Oscillation for the 16O+16O System at ELab = 145 MeV Phys. Lett. B. 312, 90482-W (1993). doi: 10.1016/0370-2693(93)90482-Whttp://doi.org/10.1016/0370-2693(93)90482-W.
C.A. Bertulani and A. Gade. Nuclear Astrophysics with Radioactive Beams. Physics Reports. 485, 09.002(2010). doi: 10.1016/j.Physrep.2009.09.002http://doi.org/10.1016/j.Physrep.2009.09.002.
L. H. Chien, D. T. Khoa, D. C. Cuong et al., Consistent Mean-Field Description of the 12C+12C Optical Potential at Low Energies and the Astrophysical S-Factor. Physical Review C. 98, 064001 (2018). doi: 10.1103/PhysRevC.98.064001http://doi.org/10.1103/PhysRevC.98.064001.
N. L. Anh, N. H. Phuc, D. T. Khoa, et al., Folding Model Approach to the Elastic p+12, 13C Scattering at Low Energies and Radiative Capture 12, 13C(p,γ) Reactions. Nuclear Physics A. 1006, 122078(2021). doi: 10.1016/j.nuclphysa.2020.122078http://doi.org/10.1016/j.nuclphysa.2020.122078.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution