1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Wen-Cheng Fang fangwencheng@zjlab.org.cn
Zhen-Tang Zhao zhaozhentang@sinap.ac.cn
Scan for full text
Cheng Wang, Jian-Hao Tan, Xiao-Xia Huang, et al. Design optimization and cold RF test of a 2.6-cell cryogenic RF gun. [J]. Nuclear Science and Techniques 32(9):97(2021)
Cheng Wang, Jian-Hao Tan, Xiao-Xia Huang, et al. Design optimization and cold RF test of a 2.6-cell cryogenic RF gun. [J]. Nuclear Science and Techniques 32(9):97(2021) DOI: 10.1007/s41365-021-00925-8.
To further improve the performance of accelerators, the first cryogenic normal-conducting RF gun in China was designed and manufactured. As a new and attractive trend, this optimized cryogenic RF gun can generate a low-emittance beam with a short-driven laser pulse because of its promising high gradient on the cathode. In this paper, optimization of the RF design and beam dynamics, including suppression of the peak RF field and elimination of the multipole mode, is presented. In addition, the emittance growth caused by the alignment deviation and RF jitter is discussed. After the gun was manufactured, a cold test was conducted at both room temperature and cryogenic conditions. At room temperature, the field distribution was obtained by the bead pull method. Under cryogenic conditions, the RF properties, such as the coupling coefficient and quality factor, varied with temperature. The test results agreed with the design. In the cryogenic test, vibration measurements were performed. Without vibration isolation, a maximum vibration of 50 ,μ m, was observed. These cold test results are the basis of the following high-power test.
PhotoinjectorCryogenic structureC-bandCold test
M.P. Minitti, J.M. Budarz, A. Kirrander, et al., Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015). doi: 10.1103/PhysRevLett.114.255501http://doi.org/10.1103/PhysRevLett.114.255501
S. Weathersby, G. Brown, M. Centurion, et al., Mega-electron-volt ultrafast electron diffraction at slac national accelerator laboratory. Review of Scientific Instruments 86, 073702 (2015). doi: 10.1063/1.4926994http://doi.org/10.1063/1.4926994
C. Wang, Z.H. Zhu, Z.G. Jiang, et al., Design of a 162.5 mhz continuous-wave normal-conducting radiofrequency electron gun. Nuclear Science and Techniques 31, 110 (2020). doi: 10.1007/s41365-020-00817-3http://doi.org/10.1007/s41365-020-00817-3
K. Liu, L. Li, C. Wang, et al., Multi-port cavity model and low-level rf systems design for vhf gun. Nuclear Science and Techniques 31, 8 (2020). doi: 10.1007/s41365-019-0711-2http://doi.org/10.1007/s41365-019-0711-2
J.F. Schmerge, J. Castro, J.E. Clendenin, et al., The s-band 1.6 cell rf gun correlated energy spread dependence on π and 0 mode relative amplitude. International Journal of Modern Physics A 22, 4061-4068 (2007). doi: 10.1142/S0217751X07037639http://doi.org/10.1142/S0217751X07037639
D. Ying-Chao, Y. Li-Xin, D. Qiang, et al., First beam measurements of the s-band photocathode radio-frequency gun at tsinghua university. Chinese Physics Letters 24, 1876-1878 (2007). doi: 10.1088/0256-307x/24/7/024http://doi.org/10.1088/0256-307x/24/7/024
Y. Chen, H.J. Qian, M. Krasilnikov, et al., Frequency-detuning dependent transient coaxial rf coupler kick in an l-band long-pulse high-gradient rf photogun. Physical Review Accelerators and Beams 23, 010101 (2020). doi: 10.1103/PhysRevAccelBeams.23.010101http://doi.org/10.1103/PhysRevAccelBeams.23.010101
W.E. White, A. Robert, M. Dunne, The linac coherent light source. Journal of synchrotron radiation 22, 472-476 (2015). doi: 10.1107/s1600577515005196http://doi.org/10.1107/s1600577515005196
J. Feldhaus, Flash-the first soft x-ray free electron laser (fel) user facility. Journal of Physics B: Atomic, Molecular and Optical Physics 43, 194002 (2010).
R. Ganter, Swissfel-conceptual design report. Tech. rep., Paul Scherrer Institute (PSI) (2010)
C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nuclear Science and Techniques 29, 160 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
H.P. Geng, J.H. Chen, Z.T. Zhao, Scheme for generating 1 nm x-ray beams carrying orbital angular momentum at the sxfel. Nuclear Science and Techniques 31, 88 (2020). doi: 10.1007/s41365-020-00794-7http://doi.org/10.1007/s41365-020-00794-7
X. Li, J.Q. Zhang, G.Q. Lin, et al., Performance of an electron linear accelerator for the first photoneutron source in china. Nuclear Science and Techniques 30, 53 (2019). doi: 10.1007/s41365-019-0576-4http://doi.org/10.1007/s41365-019-0576-4
B.J. Claessens, S.B. van der Geer, G. Taban, et al., Ultracold electron source. Phys. Rev. Lett. 95, 164801 (2005). doi: 10.1103/PhysRevLett.95.164801http://doi.org/10.1103/PhysRevLett.95.164801
S. Bettoni, M. Aiba, B. Beutner, et al., Preservation of low slice emittance in bunch compressors. Phys. Rev. Accel. Beams 19, 034402 (2016). doi: 10.1103/PhysRevAccelBeams.19.034402http://doi.org/10.1103/PhysRevAccelBeams.19.034402
M. Altarelli, R. Brinkmann, M. Chergui, et al., The european x-ray free-electron laser. Technical Design Report, DESY 97, 1-26 (2006). doi: 10.1080/08940880601064968http://doi.org/10.1080/08940880601064968
R. Akre, D. Dowell, P. Emma, et al., Commissioning the linac coherent light source injector. Physical Review Special Topics-Accelerators and Beams 11, 030703 (2008). doi: 10.1103/PhysRevSTAB.11.030703http://doi.org/10.1103/PhysRevSTAB.11.030703
W. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc. Review of Scientific Instruments 28, 824-826 (1957). doi: 10.1063/1.1715731http://doi.org/10.1063/1.1715731
W. Fang, L. Wang, Z. Zhao, Conceptual study and design of a c-band photocathode injector. Radiation Detection Technology and Methods 3,. doi: 10.1007/s41605-019-0117-zhttp://doi.org/10.1007/s41605-019-0117-z
C. Limborg-Deprey, C. Adolphsen, D. McCormick, et al., Performance of a first generation x-band photoelectron rf gun. Physical Review Accelerators and Beams 19,. doi: 10.1103/PhysRevAccelBeams.19.053401http://doi.org/10.1103/PhysRevAccelBeams.19.053401
A.D. Cahill, J.B. Rosenzweig, V.A. Dolgashev, et al., High gradient experiments with x-band cryogenic copper accelerating cavities. Phys. Rev. Accel. Beams 21, 102002 (2018). doi: 10.1103/PhysRevAccelBeams.21.102002http://doi.org/10.1103/PhysRevAccelBeams.21.102002
E.Z. Engelberg, Y. Ashkenazy, M. Assaf, Stochastic model of breakdown nucleation under intense electric fields. Physical review letters 120, 124801 (2018). doi: 10.1103/PhysRevLett.120.124801http://doi.org/10.1103/PhysRevLett.120.124801
N.J. Simon, E.S. Drexler, R.P. Reed, Properties of copper and copper alloys at cryogenic temperatures. final report. (2 1992) https://www.osti.gov/biblio/5340308https://www.osti.gov/biblio/5340308
J. Rosenzweig, A. Cahill, V. Dolgashev, et al., Next generation high brightness electron beams from ultra-high field cryogenic radiofrequency photocathode sources. Physical Review Accelerators and Beams 22,. doi: 10.1103/PhysRevAccelBeams.22.023403http://doi.org/10.1103/PhysRevAccelBeams.22.023403
A. Iino, S. Yamaguchi, T. Shintomi, et al., Development of low-loss cryo-accelerating structure with high-purity copper. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 866, 40-47 (2017). doi: 10.1016/j.nima.2017.04.012http://doi.org/10.1016/j.nima.2017.04.012
H. Lee, I. Bazarov, L. Cultrera, et al., in 8th Int. Particle Accelerator Conf.(IPAC'17), Copenhagen, Denmark, 14â 19 May, 2017, A cryogenically cooled high voltage dc photogun. JACOW, Geneva, Switzerland, 2017, pp. 1618-1621
K. Halbach, R. Holsinger, Superfish-a computer program for evaluation of rf cavities with cylindrical symmetry. Particle Accelerators 7, 213-222 (1976).
Cst studio suite, cst mircowave studio. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
A. Grudiev, S. Calatroni, W. Wuensch, New local field quantity describing the high gradient limit of accelerating structures. Physical Review Special Topics-Accelerators and Beams 12, 102001 (2009). doi: 10.1103/PhysRevSTAB.12.102001http://doi.org/10.1103/PhysRevSTAB.12.102001
M.S. Chae, J.H. Hong, Y.W. Parc, et al., Emittance growth due to multipole transverse magnetic modes in an rf gun. Physical Review Accelerators and Beams 14, 104203 (2011). doi: 10.1103/PhysRevSTAB.14.104203http://doi.org/10.1103/PhysRevSTAB.14.104203
K. Floettmann, Astra, a space charge tracking algorithm. http://www.desy.de/mpyflo/http://www.desy.de/mpyflo/
C.C. Xiao, J.Q. Zhang, J.H. Tan, et al., Design and preliminary test of the llrf in c band high-gradient test facility for sxfel. Nuclear Science and Techniques 31, 100 (2020). doi: 10.1007/s41365-020-00806-6http://doi.org/10.1007/s41365-020-00806-6
Z.B. Li, A. Grudiev, W.C. Fang, et al., Radio-frequency design of a new c-band variable power splitter. Nuclear Science and Techniques 30, 100 (2019). doi: 10.1007/s41365-019-0611-5http://doi.org/10.1007/s41365-019-0611-5
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution