1.Institute of Nuclear Physics and Chemistry, Mianyang 621900, China
2.E.T.S.I. Aeronáuticos y del Espacio, Universidad Politécnica de Madrid, Madrid 28040, Spain
Zhan-Chang Huang huangzhanchang@foxmail.com
Scan for full text
Zhan-Chang Huang, Shi-Jian Meng, Ze-Ping Xu, et al. An initial study on liner-like Z-pinch loads with a novel configuration on Qiangguang-I facility. [J]. Nuclear Science and Techniques 32(9):100(2021)
Zhan-Chang Huang, Shi-Jian Meng, Ze-Ping Xu, et al. An initial study on liner-like Z-pinch loads with a novel configuration on Qiangguang-I facility. [J]. Nuclear Science and Techniques 32(9):100(2021) DOI: 10.1007/s41365-021-00928-5.
A series of liner-like Z-pinch loads with a novel configuration, have been investigated experimentally for the first time on Qiangguang-I facility in China. The metallic layer is sputtered on the inner surface of the cylindrical SiO,2, substrate tube. In the preliminary experiment, the electric current flowed through the metallic load during the prepulse. However, the currents also flowed through the outer surface of the SiO,2, substrate during the main pulse. After the dielectric length had been increased in the formal experiment, most of the current flowed through the metallic load, until radial radiation peak was measured by radiation monitor. As the line mass of metallic load increases, the peak time of radial radiation also increases. Axial ultraviolet frames indicate that the radiations are nearly azimuthally uniform at first, but the uniformity becomes worse after radial radiation peak. The clearly separated boundary between metal plasmas and the substrate, has not been observed in the experiment. Experimental results are discussed and compared with simulation using the one-dimension radiation hydrodynamics code MULTI-IFE.
Z-pinchliner-likeUV frameQiangguang-I
M.G. Haines, A review of the dense Z-pinch. Plasma Phys. Control. Fusion 53, 093001(2011). doi: 10.1088/0741-3335/53/9/093001http://doi.org/10.1088/0741-3335/53/9/093001
Z. Wang, Z.H. Li, R.K. Xu et al., X-ray radiation power optimization in 1 MA to 4 MA wire-array implosions. Acta Phys. Sin. 60(2), 025209 (2011). doi: 10.7498/aps.60.025209http://doi.org/10.7498/aps.60.025209
Z.C. Huang, J.L. Yang, R.K. Xu et al., Axially resolved radiation of tungsten wire-array Z-pinches on JULONG-I. High Energy Density Physics 21(1), 1-7 (2016). doi: 10.1016/j.hedp.2016.09.001http://doi.org/10.1016/j.hedp.2016.09.001
G.X. Xia, F.Q. Zhang, Z.P. Xu et al., Radiation characteristics of single wire array Z-pinch implosion. Acta Phys. Sin. 59(1), 97-102 (2010). doi: 10.7498/aps.59.97http://doi.org/10.7498/aps.59.97 (in Chinese)
F. Ye, F.B. Xue, Y.Y. Chu et al., Experimental study on current division of nested wire array Z pinches. Acta Phys. Sin. 62(17), 175203 (2013). doi: 10.7498/aps.62.175203http://doi.org/10.7498/aps.62.175203 (in Chinese)
S.Q. Jiang, F. Ye, J.L. Yang et al., Implosion characteristics of conical wire array Z pinches on "Qiangguang1" facility. Acta Phys. Sin. 61(19), 195205 (2012). doi: 10.7498/aps.61.195205http://doi.org/10.7498/aps.61.195205
F. Ye, Z.H. Li, F.X. Chen et al., Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA. Physics of Plasmas V.23.6, 064502(2016). doi: 10.1063/1.4952620http://doi.org/10.1063/1.4952620
Y.Y. Chu, Z.H. Li, J.L. Yang et al., Simulation of the quasi-spherical wire-array implosion dynamics based on a multi-element model. Plasma Physics and Controlled Fusion, 54(10):105020(2012). doi: 10.1088/0741-3335/54/10/105020http://doi.org/10.1088/0741-3335/54/10/105020
Y. Zhang, N. Ding, Z.H. Li et al., Numerical study of quasi-spherical wire-array implosions on the Qiangguang-I facility. IEEE T. Plasma Sci. 40(12), 3360-3366 (2012). doi: 10.1109/TPS.2012.2219075http://doi.org/10.1109/TPS.2012.2219075
F.Y. Wu, Y.Y. Chu, R. Ramis et al., Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum. Matter and Radiation at Extremes V.3.5, 248 (2018). doi: 10.1016/j.mre.2018.06.001http://doi.org/10.1016/j.mre.2018.06.001
XJ. Peng, Z. Wang, Conceptual research on z-pinch driven fusion-fission hybrid reactor. High Power Laser and Particle Beams 26(9), 090201 (2014). doi: 10.11884/HPLPB201426.090201http://doi.org/10.11884/HPLPB201426.090201 (in Chinese)
Y.K. Zhao, B.Y Ouyang, W. Wen et al., Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Phys. Sin. 64(4), 045205 (2015). doi: 10.7498/aps.64.045205http://doi.org/10.7498/aps.64.045205 (in Chinese)
J.C. Cochrane, R.R. Bartsch, J.F. Benage et al., Direct drive foil implosion experiments on Pegasus II. AIP Conf. Proc. 299(1), 381-387(1994). doi: 10.1063/1.2949181http://doi.org/10.1063/1.2949181
J.H. Degnan, W.L. Baker, M.L. Alme et al., Multimegajoule electromagnetic implosion of shaped solid-density liners. Fusion technology 27(2),115-123 (1995). doi: 10.1016/0920-3796(95)90112-4http://doi.org/10.1016/0920-3796(95)90112-4
J.H. Degnan, F.M. Lehr, J.D. Beason et al., Electromagnetic implosion of spherical liner. Phys. Rev. Lett. 74, 98 (1995). doi: 10.1103/PhysRevLett.74.98http://doi.org/10.1103/PhysRevLett.74.98
K.J. Peterson, D.B. Sinars, E.P. Yu et al., Electrothermal instability growth in magnetically driven pulsed power liners. Physics of Plasmas 19(9), 092701 (2012). doi: 10.1063/1.4751868http://doi.org/10.1063/1.4751868
K.J. Peterson, E.P. Yu, D.B. Sinars et al., Simulations of electrothermal instability growth in solid aluminum rods. Physics of Plasmas 20(5), 056305 (2013). doi: 10.1063/1.4802836http://doi.org/10.1063/1.4802836
K.J. Peterson, T.J. Awe, E.P. Yu et al., Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors. Phys. Rev. Lett. 112(13), 135002 (2014). doi: 10.1103/PhysRevLett.112.135002http://doi.org/10.1103/PhysRevLett.112.135002
A.C. Qiu, K. Bin, Z.Z. Zeng et al., Study on W wire array Z pinch plasma radiation at qiangguang-I facility. Acta Phys. Sin. 55(11), 5917-5922(2006). doi: 10.7498/aps.55.5917http://doi.org/10.7498/aps.55.5917 (in Chinese)
T. Huang, P.T. Cong, G.W. Zhang et al., Circuit simulation and analysis for Qiangguang-I Accelerator. High Power Laser and Particle Beams 22(4), 897-900 (2010). doi: 10.3788/HPLPB20102204.0897http://doi.org/10.3788/HPLPB20102204.0897 (in Chinese)
J.S. Du, J.H. Wu, L.L. Zhao et al., Coloration of glasses induced by space ionizing radiation. Journal of Inorganic Materials V.27.4,411-416(2012). doi: 10.3724/SP.J.1077.2012.00411http://doi.org/10.3724/SP.J.1077.2012.00411
P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications[J]. Vacuum, 56(3):159-172(2000). doi: 10.1016/S0042-207X(99)00189-Xhttp://doi.org/10.1016/S0042-207X(99)00189-X
Q. Yi, Q.S. Huang, XM. Wang et al., Structure and extreme ultraviolet performance of Si/C multilayers deposited under different working pressures. Applied optics V.56.4, C145-C150 (2017). doi: 10.1364/AO.56.00C145http://doi.org/10.1364/AO.56.00C145
Z.C. Huang, J.L. Yang, R.K. Xu et al., Design of flat response plastic scintillator. High Power Laser and Particle Beams V.28.11, 28112001(2016). doi: 10.11884/HPLPB201628.160133http://doi.org/10.11884/HPLPB201628.160133
Q.Y. Hu, J.M. Ning, F. Ye et al., Applications of thin film plastic scintillator in measurement of soft x rays generated from Z-pinch implosion. Review of Scientific Instruments V.89.10, 103112 (2018). doi: 10.1063/1.5049449http://doi.org/10.1063/1.5049449
F.X. Chen, J.H. Feng, L.B. Li et al., Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Phys. Sin. V.62.4, 45204-045204(2013). doi: 10.7498/aps.62.045204http://doi.org/10.7498/aps.62.045204
H.W. Xie, F.X. Chen, Q. Yi et al., Application of ultraviolet laser probe in Z-pinch. High Power Laser and Particle Beams V.29.04, 29042001 (2017). doi: 10.11884/HPLPB201729.160506http://doi.org/10.11884/HPLPB201729.160506
N. Guo, L.P. Wang, J.J. Han et al., Differential loop for measuring 1 MA/100 ns pulsed high current. High Power Laser and Particle Beams 24.3, 519-523(2012). doi: 10.3788/HPLPB20122403.0519http://doi.org/10.3788/HPLPB20122403.0519
C. Li, X. Li, K.H. Zhang et al., Femtosecond laser induced breakdown in fused silica by linearly, circularly and elliptically polarized lasers. Acta Photonica Sinica V.43.1 0132002(2014). doi: 10.3788/gzxb201443s1.0132002http://doi.org/10.3788/gzxb201443s1.0132002
R. Rafael, R. Schmalz, J. Meyer-ter-Vehn, MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Computer Physics Communications V.49.3 475-505(1988). doi: 10.1016/0010-4655(88)90008-2http://doi.org/10.1016/0010-4655(88)90008-2
F.Y. Wu, R. Ramis, Z.H. Li et al., Numerical Simulation of the Interaction Between Z-Pinch Plasma and Foam Converter Using Code MULTI (#8353). Fusion Science and Technology V.72.4, 726-730(2017). doi: 10.1080/15361055.2017.1347458http://doi.org/10.1080/15361055.2017.1347458
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution