1.Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China
2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060,China
3.Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, China
4.University of Science & Technology of China, Hefei 230031, China
E-mail:Zhen-Wei Wu zwwu@ipp.ac.cn,
Ling Zhang zhangling@ipp.ac.cn
Scan for full text
Zong Xu, Zhen-Wei Wu, Ling Zhang, et al. Tungsten control in type-I ELMy H-mode plasmas on EAST. [J]. Nuclear Science and Techniques 32(9):95(2021)
Zong Xu, Zhen-Wei Wu, Ling Zhang, et al. Tungsten control in type-I ELMy H-mode plasmas on EAST. [J]. Nuclear Science and Techniques 32(9):95(2021) DOI: 10.1007/s41365-021-00929-4.
The first experimental investigation of the tungsten behavior in ELMy H-mode plasmas with co-/counter neutral beam injection (NBI) and unfavorable/favorable ,B,t, was performed on EAST. Tungsten was found to accumulate easily in ELMy H-mode plasma with co-NBI heating and unfavorable ,B,t,. Thus, in this case the tungsten concentration can exceed 10,−4, resulting in degradation of the plasma confinement and periodic H-L transitions. To reduce the tungsten concentration in steady-state type-I ELMy H-mode operation, counter-NBI is applied to modify the density and temperature and brake the plasma toroidal rotation. The applied counter-NBI decreases the PHZ+,E,r, inward pinch velocity and reverses the direction of neoclassical inward convection, thus decreasing the tungsten concentration from ~7 × 10,−5, to ~2 × 10,−5, in type-I ELMy H-mode plasma with favorable ,B,t,. A comparison of the effects of different ,B,t, directions on the tungsten behavior also shows that favorable ,B,t, is beneficial for reducing the tungsten concentration in the core plasma. These results imply that counter-NBI with favorable ,B,t, can effectively prevent tungsten accumulation and expand the operating window for exploring steady-state type-I ELMy H-mode operation of EAST.
Tungsten accumulationCounter-NBIfavorable BtELMy H-modeEAST
R.C. Isler, Impurities in tokamak. Nucl. Fusion 24, 1599-1678 (1984). doi: 10.1088/0029-5515/24/12/008http://doi.org/10.1088/0029-5515/24/12/008
E.Z. Li, L. Xu, W. Guo et al., Understanding the destabilization of a resistive drift mode in EAST core plasmas. Phys. Plasma 24, 022504 (2017). doi: 10.1063/1.4976136http://doi.org/10.1063/1.4976136
J.A. Wesson, R.D. Gill, M. Hugon et al., Disruptions in JET. Nucl. Fusion 29, 641 (1989). doi: 10.1088/0029-5515/29/4/009http://doi.org/10.1088/0029-5515/29/4/009
R.C. Isler, W.L. Roman, W.L. Hodge, Long-Time Impurity Confinement as a Precursor to Disruption in Ohmically Heated Tokamaks. Phys. Rev. Lett. 55, 2413 (1985). doi: 10.1103/physrevlett.55.2413http://doi.org/10.1103/physrevlett.55.2413
D.H. Zhu, C.J. Li, R. Li et al., Characterization of the in situ leading-edge-induced melting on the ITER-like tungsten divertor in EAST. Nucl. Fusion 60, 016036 (2020). doi: 10.1088/1741-4326/ab561ehttp://doi.org/10.1088/1741-4326/ab561e
T. Püetterich, R. Dux, R. Neu et al., Observations on the W-transport in the core plasma of JET and ASDEX Upgrade. Plasma Phys. Control. Fusion 55, 124036 (2013). doi: 10.1088/0741-3335/55/12/124036http://doi.org/10.1088/0741-3335/55/12/124036
M. Mayer, M. Andrzejczuk, R. Dux et al., Tungsten erosion and redeposition in the all-tungsten divertor of ASDEX Upgrade. Phys. Scr. 2009, 014039 (2009). doi: 10.1088/0031-8949/2009/t138/014039http://doi.org/10.1088/0031-8949/2009/t138/014039
T. Pütterich, R. Dux, M.N.A. Beurskens et al., Tungsten screening and impurity control in JET. Paper presented at 24th IAEA Conference on Fusion Energy, San Diego, USA 8-13 Oct. 2012. https://juser.fz-juelich.de/record/134562https://juser.fz-juelich.de/record/134562
S.Y. Shi, X. Jian, V.S. Chan et al., Evaluating the effects of tungsten on CFTER phase I performance. Nucl. Fusion 58, 126020 (2018). doi: 10.1088/1741-4326/aae397http://doi.org/10.1088/1741-4326/aae397
S.P. Hirshman and D.J. Sigmar, Neoclassical transport of impurities in tokamak plasmas. Nucl. Fusion 21, 1079-1201 (1981). doi: 10.1088/0029-5515/21/9/003http://doi.org/10.1088/0029-5515/21/9/003
H. Maassberg, R. Brakel, R. Burhenn et al., Transport in stellarators. Plasma Phys. Control. Fusion 35, B319-B332 (1993). doi: 10.1088/0741-3335/35/sb/026http://doi.org/10.1088/0741-3335/35/sb/026
K. Hoshino, M. Toma, K. Shimizu et al., Inward pinch of high-Z impurity in a rotating tokamak plasma: effects of atomic processes, radial electric field and Coulomb collisions. Nucl. Fusion 51, 083027 (2011). doi: 10.1088/0029-5515/51/8/083027http://doi.org/10.1088/0029-5515/51/8/083027
R.C. Isler, L.E. Murray, E.C. Crume et al., Impurity transport and plasma rotation in the ISX-B tokamak. Nuclear Fusion 23, 1017 (1983). doi: 10.1088/0029-5515/23/8/003http://doi.org/10.1088/0029-5515/23/8/003
T. Nakano and The JT-60 Team, Tungsten transport and accumulation in JT-60U. J. Nucl. Mater. 415, S327-S333 (2011). doi: 10.1016/j.jnucmat.2010.12.020http://doi.org/10.1016/j.jnucmat.2010.12.020
R. Neu, R. Dux, A. Geier et al., Impurity behaviour in the ASDEX Upgrade divertor tokamak with large area tungsten walls. Plasma Phys. Control. Fusion 44, 811 (2002). doi: 10.1088/0741-3335/44/6/313http://doi.org/10.1088/0741-3335/44/6/313
P. Helander and D.J. Sigmar, Collisional Transport in Magnetized Plasmas. (Cambridge, Cambridge University Press, 2002).
Y. Nakamura, N. Tamura, M. Yoshinuma et al., Strong suppression of impurity accumulation in steady-state hydrogen discharges with high power NBI heating on LHD. Nucl. Fusion 57, 056003 (2017). doi: 10.1088/1741-4326/aa6187http://doi.org/10.1088/1741-4326/aa6187
H. Nordman, A. Skyman, P. Strand et al., Fluid and gyrokinetic simulations of impurity transport at JET. Plasma Phys. Control. Fusion 53, 105005 (2011). doi: 10.1088/0741-3335/53/10/105005http://doi.org/10.1088/0741-3335/53/10/105005
C. Estrada-Mila, J. Candy, and R.E. Waltz, Gyrokinetic simulations of ion and impurity transport. Phys. Plasma 12, 022305 (2005). doi: 10.1063/1.1848544http://doi.org/10.1063/1.1848544
T. Fülöp and H. Nordman, Turbulent and neoclassical impurity transport in tokamak plasmas. Phys. Plasma 16, 032306 (2009). doi: 10.1063/1.3083299http://doi.org/10.1063/1.3083299
C. Angioni, F.J Casson, P. Mantica et al., The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas. Phys. Plasmas 22, 055902 (2015). doi: 10.1063/1.4919036http://doi.org/10.1063/1.4919036
C. Angioni, P. Mantica, T. Püetterich et al., Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling. Nucl. Fusion 54, 083028 (2014). doi: 10.1088/0029-5515/54/8/083028http://doi.org/10.1088/0029-5515/54/8/083028
T. Odstrcil, T. Püetterich, C. Angioni et al., The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade. Plasma Phys. Control. Fusion 60, 014003 (2018). doi: 10.1088/1361-6587/aa8690http://doi.org/10.1088/1361-6587/aa8690
Th. Wegner, J.A. Alcusón, B. Geiger et al., Impact of the temperature ratio on turbulent impurity transport in Wendelstein 7-X. Nucl. Fusion 60, 124004 (2020). doi: 10.1088/1741-4326/abb869http://doi.org/10.1088/1741-4326/abb869
C. Angioni, Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities. Phys. Plasmas 22, 102501 (2015). doi: 10.1063/1.4932070http://doi.org/10.1063/1.4932070
L. Zhang, S. Morita, Z. Xu et al., Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak. Nuclear Material and Energy 12, 774-778 (2017). doi: 10.1016/j.nme.2017.01.009http://doi.org/10.1016/j.nme.2017.01.009
Q.Q. Yang, G.S. Xu, N. Yan et al., Stationary high-performance grassy ELM regime in EAST. Nucl. Fusion 60, 076012 (2020). doi: 10.1088/1741-4326/ab8e0fhttp://doi.org/10.1088/1741-4326/ab8e0f
Y.C. Shen, H.M. Zhang, B. Lyu et al., Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak. Chin. Phys. B 29, 065206 (2020). doi: 10.1088/1674-1056/ab8456http://doi.org/10.1088/1674-1056/ab8456
X.J. Zhang, Y.P. Zhao, X.Z. Gong et al., Steady State Plasma Operation In RF Dominated Regimes On EAST. AIP Conference Proceedings 1689, 030012 (2015). doi: 10.1063/1.4936477http://doi.org/10.1063/1.4936477
Z. Chen, Y.P. Zhao, G. Chen et al., Design and implementation of power and phase feedback control system for ICRH on EAST. Nucl. Sci. Tech. 29(2), 19 (2018). doi: 10.1007/s41365-018-0362-8http://doi.org/10.1007/s41365-018-0362-8
Z.X. Cui, X. Li, S.B. Shu et al., Calculation of the heat flux in the lower divertor target plate using an infrared camera diagnostic system on the Experimental Advanced Superconducting Tokamak. Nucl. Sci. Tech. 30(6), 94 (2019). doi: 10.1007/s41365-019-0625-zhttp://doi.org/10.1007/s41365-019-0625-z
D.M. Yao, G.N. Luo, S.J. Du et al., Overview of the EAST in-vessel components upgrade. Fusion Eng. Des. 98, 1692-1695 (2015). doi: 10.1016/j.fusengdes.2015.06.084http://doi.org/10.1016/j.fusengdes.2015.06.084
C.D. Hu for the NBI team, First achievement of plasma heating for EAST neutral beam injector. Plasma Sci. Technol. 17, 1-3 (2015). doi: 10.1088/1009-0630/17/1/01http://doi.org/10.1088/1009-0630/17/1/01
L. Tao, C.D. Hu, Y.L. Xie, Thermodynamic analysis and simulation for gas baffle entrance collimator of EAST-NBI systembased on thermo-fluid coupled method. Nucl. Sci. Tech. 29(1), 2 (2018). doi: 10.1007/s41365-017-0349-xhttp://doi.org/10.1007/s41365-017-0349-x
L. Li, L. Zhang, Z. Xu et al., Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas. Plasma Sci. Technol. 23, 075102 (2021). doi: 10.1088/2058-6272/abfea2http://doi.org/10.1088/2058-6272/abfea2
L. Zhang, S. Morita, Z. Xu et al., A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak. Rev. Sci. Instrum. 86, 123509 (2015). doi: 10.1063/1.4937723http://doi.org/10.1063/1.4937723
S.B. Shu, C.M. Yu, C. Chao et al., Improved plasma position detection method in EAST Tokamak using fast CCD camera. Nucl. Sci. Tech. 30(2), 24 (2019). doi: 10.1007/s41365-019-0549-7http://doi.org/10.1007/s41365-019-0549-7
X. Gao, Y. Yang, T. Zhang et al., Key issues for long-pulse high-βN operation with the Experimental Advanced Superconducting Tokamak (EAST). Nucl. Fusion 57, 056021 (2017). doi: 10.1088/1741-4326/aa626chttp://doi.org/10.1088/1741-4326/aa626c
B.N. Wan, Y.F. Liang, X.Z. Gong et al., Overview of EAST experiments on the development of high-performance steady-state scenario. Nucl. Fusion 57, 102019 (2017). doi: 10.1088/1741-4326/aa7861http://doi.org/10.1088/1741-4326/aa7861
B.N. Wan, J.G. Li, H.Y. Guo et al., Advances in H-mode physics for long-pulse operation on EAST. Nucl. Fusion 55, 104015 (2015). doi: 10.1088/0029-5515/55/10/104015http://doi.org/10.1088/0029-5515/55/10/104015
B.N. Wan and the EAST team, A New Path to Improve High βp Plasma Performance on EAST for Steady-State Tokamak Fusion Reactor. Chin. Phys. Lett. 37, 045202 (2020) doi: 10.1088/0256-307X/37/4/045202http://doi.org/10.1088/0256-307X/37/4/045202
Z. Xu, Z.W. Wu, W. Gao et al., Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST). Rev. Sci. Instrum. 87, 11D429 (2016). doi: 10.1063/1.4961294http://doi.org/10.1063/1.4961294
J. Ou, N. Xiang, Z.Z. Men et al., Estimation of tungsten production from the upper divertor in EAST during edge localized modes. Chin. Phys. B 28, 125201 (2019). doi: 10.1088/1674-1056/ab5279http://doi.org/10.1088/1674-1056/ab5279
X.D. Yang et al., Plasma Phys. Control. Fusion submitted (2020)
T.C. Hender, P. Buratti, F.J. Casson et al., The role of MHD in causing impurity peaking in JET hybrid plasmas. Nucl. Fusion 56, 066002 (2016). doi: 10.1088/0029-5515/56/6/066002http://doi.org/10.1088/0029-5515/56/6/066002
M. Sertoli, R. Dux, T. Pütterich et al., Modification of impurity transport in the presence of saturated (m,n) = (1,1) MHD activity at ASDEX Upgrade. Plasma Phys. Control. Fusion 57, 075004 (2015). doi: 10.1088/0741-3335/57/7/075004http://doi.org/10.1088/0741-3335/57/7/075004
A. Mollén, I. Pusztai, T. Fülöp et al., Impurity transport in trapped electron mode driven turbulence. Phys. Plasma 20, 032310 (2013). doi: 10.1063/1.4796196http://doi.org/10.1063/1.4796196
J. Li, Z.X. Wang, J.Q. Dong et al., Impurity effects on ion temperature gradient driven multiple modes in transport barriers. Nucl. Fusion 59, 076013 (2019). doi: 10.1088/1741-4326/ab0ee2http://doi.org/10.1088/1741-4326/ab0ee2
G.R. McKee, M. Murakami, J.A. Boedo et al., Impurity-induced turbulence suppression and reduced transport in the DIII-D tokamak. Phys. Plasmas 7, 1870 (2000). doi: 10.1063/1.874010http://doi.org/10.1063/1.874010
T. Parisot, R. Guirlet, C. Bourdelle et al., Experimental impurity transport and theoretical interpretation in a Tore Supra lower-hybrid heated plasma. Plasma Phys. Control. Fusion 50, 055010 (2008). doi: 10.1088/0741-3335/50/5/055010http://doi.org/10.1088/0741-3335/50/5/055010
K. Ida, R.J. Fonck, C. Sesnic et al., Observation of Z-dependent Impurity Accumulation in the PBX Tokamak. Phys. Rev. Lett. 58, 116-119 (1987). doi: 10.1103/PhysRevLett.58.116http://doi.org/10.1103/PhysRevLett.58.116
OPEN-ADAS home page. http://open.adas.ac.uk/http://open.adas.ac.uk/
J.W. Coenen, O. Schmitz, B. Unterberg et al., Rotation and radial electric field in the plasma edge with resonant magnetic perturbation at TEXTOR. Nucl. Fusion 51, 063030 (2011). doi: 10.1088/0029-5515/51/6/063030http://doi.org/10.1088/0029-5515/51/6/063030
R.C. Isler, P.D. Morgan, N.J. Peacock, Impurity accumulation in ISX-B during counter-injection—are alternative hypotheses valid? Nucl. Fusion 25, 386-392 (1985). doi: 10.1088/0029-5515/25/3/013http://doi.org/10.1088/0029-5515/25/3/013
X. Lin, Q.Q. Yang, G.S. Xu et al., Plasma performance improvement with favourable Bt relative to unfavourable Bt in RF-heated H-mode plasmas in EAST. Nucl. Fusion 61, 026014 (2021). doi: 10.1088/1741-4326/abcb27http://doi.org/10.1088/1741-4326/abcb27
L. Zhang, S. Morita, Z.W. Wu et al., A space-resolved extreme ultraviolet spectrometer for radial profile measurement of tungsten ions in the Experimental Advanced Superconducting Tokamak. Nuclear Inst. and Methods in Physics Research, A 916, 169-178 (2019). doi: 10.1016/j.nima.2018.11.082http://doi.org/10.1016/j.nima.2018.11.082
N. Oyama, Y. Kamada, A. Isayama et al., ELM frequency dependence on toroidal rotation in the grassy ELM regime in JT-60U. Plasma Phys. Control. Fusion 49, 249-259 (2007). doi: 10.1088/0741-3335/49/3/005http://doi.org/10.1088/0741-3335/49/3/005
D.C. van Vugt, G.T.A. Huijmans, M. Hoelzl et al., Kinetic modeling of ELM-induced tungsten transport in a tokamak plasma. Phys. Plasmas 26, 042508 (2019). doi: 10.1063/1.5092319http://doi.org/10.1063/1.5092319
T. Püetterich, R. Dux, M.A. McDermott et al., ELM flushing and impurity transport in the H-mode edge barrier in ASDEX Upgrade. J. Nucl. Mater. 415, S334-S339 (2011). doi: 10.1016/j.jnucmat.2010.09.052http://doi.org/10.1016/j.jnucmat.2010.09.052
M.R. Wade, K.H. Burrell, A.W. Leonard et al., Edge-Localized-Mode–Induced Transport of Impurity Density, Energy, and Momentum. Phys. Rev. Lett. 94, 225001 (2005). doi: 10.1103//PhysRevLett.94.225001http://doi.org/10.1103//PhysRevLett.94.225001
R. Dux, A.G. Peeters, A. Gude et al., Z dependence of the core impurity transport in ASDEX Upgrade H mode discharges. Nucl. Fusion 39, 1509 (1999). doi: 10.1088/0029-5515/39/11/302http://doi.org/10.1088/0029-5515/39/11/302
Y.W. Yu, L. Wang, B. Cao et al., Fuel retention and recycling studies by using particle balance in EAST tokamak. Phys. Scr. T170, 014070 (2017). doi: 10.1088/1402-4896/aa8fd9http://doi.org/10.1088/1402-4896/aa8fd9
A. Mollén, I. Pusztai, T. Fülöp et al., Effect of poloidal asymmetries on impurity peaking in tokamaks. Phys. Plasma 19, 052307 (2012). doi: 10.1063/1.4719711http://doi.org/10.1063/1.4719711
C. Angioni and P. Helander, Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks. Plasma Phys. Control. Fusion 56, 124001 (2014). doi: 10.1088/0741-3335/56/12/124001http://doi.org/10.1088/0741-3335/56/12/124001
S. Espinosa and P.J. Catto, Pedestal radial flux measuring method to prevent impurity accumulation. Phys. Plasmas 24, 055904 (2017). doi: 10.1063/1.4978886http://doi.org/10.1063/1.4978886
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution