1.Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
2.School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
linz@ecu.edu
Scan for full text
Zi-Wei Lin, Liang Zheng. Further developments of a multi-phase transport model for relativistic nuclear collisions. [J]. Nuclear Science and Techniques 32(10):113(2021)
Zi-Wei Lin, Liang Zheng. Further developments of a multi-phase transport model for relativistic nuclear collisions. [J]. Nuclear Science and Techniques 32(10):113(2021) DOI: 10.1007/s41365-021-00944-5.
A multi-phase transport (AMPT) model was constructed as a self-contained kinetic theory-based description of relativistic nuclear collisions as it contains four main components: the fluctuating initial condition, a parton cascade, hadronization, and a hadron cascade. Here we review the main developments after the first public release of the AMPT source code in 2004 and the corresponding publication that described the physics details of the model at that time. We also discuss possible directions for future developments of the AMPT model to better study the properties of the dense matter created in relativistic collisions of small or large systems.
QGPTransport modelHeavy-ion collisions
T. D. Lee and G. C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291-2316 (1974). doi: 10.1103/PhysRevD.9.2291http://doi.org/10.1103/PhysRevD.9.2291
E. V. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150 (1978). doi: 10.1016/0370-2693(78)90370-2http://doi.org/10.1016/0370-2693(78)90370-2
I. Arsene et al. [BRAHMS], Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1-27 (2005). doi: 10.1016/j.nuclphysa.2005.02.130http://doi.org/10.1016/j.nuclphysa.2005.02.130
B. B. Back et al. [PHOBOS], The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28-101 (2005). doi: 10.1016/j.nuclphysa.2005.03.084http://doi.org/10.1016/j.nuclphysa.2005.03.084
J. Adams et al. [STAR], Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102-183 (2005). doi: 10.1016/j.nuclphysa.2005.03.085http://doi.org/10.1016/j.nuclphysa.2005.03.085
K. Adcox et al. [PHENIX], Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184-283 (2005). doi: 10.1016/j.nuclphysa.2005.03.086http://doi.org/10.1016/j.nuclphysa.2005.03.086
U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123-151 (2013). doi: 10.1146/annurev-nucl-102212-170540http://doi.org/10.1146/annurev-nucl-102212-170540
W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339-376 (2018). doi: 10.1146/annurev-nucl-101917-020852http://doi.org/10.1146/annurev-nucl-101917-020852
M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750, 30-63 (2005). doi: 10.1016/j.nuclphysa.2004.10.034http://doi.org/10.1016/j.nuclphysa.2004.10.034
S. A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255-369 (1998). doi: 10.1016/S0146-6410(98)00058-1http://doi.org/10.1016/S0146-6410(98)00058-1
B. Zhang, C. M. Ko, B. A. Li and Z. W. Lin, A multiphase transport model for nuclear collisions at RHIC. Phys. Rev. C 61, 067901 (2000). doi: 10.1103/PhysRevC.61.067901http://doi.org/10.1103/PhysRevC.61.067901
Z. Xu and C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade. Phys. Rev. C 71, 064901 (2005). doi: 10.1103/PhysRevC.71.064901http://doi.org/10.1103/PhysRevC.71.064901
Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang and S. Pal, A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi: 10.1103/PhysRevC.72.064901http://doi.org/10.1103/PhysRevC.72.064901
W. Cassing and E. L. Bratkovskaya, Parton-Hadron-String Dynamics: an off-shell transport approach for relativistic energies. Nucl. Phys. A 831, 215-242 (2009). doi: 10.1016/j.nuclphysa.2009.09.007http://doi.org/10.1016/j.nuclphysa.2009.09.007
P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin, Radial and elliptic flow at RHIC: Further predictions. Phys. Lett. B 503, 58-64 (2001). doi: 10.1016/S0370-2693(01)00219-2http://doi.org/10.1016/S0370-2693(01)00219-2
B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin and D. H. Rischke, Universality of the diffusion wake from stopped and punch-through jets in heavy-ion collisions. Phys. Rev. C 79, 034902 (2009). doi: 10.1103/PhysRevC.79.034902http://doi.org/10.1103/PhysRevC.79.034902
B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics. Phys. Rev. Lett. 106, 042301 (2011). doi: 10.1103/PhysRevLett.106.042301http://doi.org/10.1103/PhysRevLett.106.042301
P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies. Phys. Rev. C 85, 014911 (2012). doi: 10.1103/PhysRevC.85.014911http://doi.org/10.1103/PhysRevC.85.014911
H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stöcker, A fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78, 044901 (2008). doi: 10.1103/PhysRevC.78.044901http://doi.org/10.1103/PhysRevC.78.044901
K. Werner, I. Karpenko, T. Pierog, M. Bleicher and K. Mikhailov, Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82, 044904 (2010). doi: 10.1103/PhysRevC.82.044904http://doi.org/10.1103/PhysRevC.82.044904
H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 106, 192301 (2011). [erratum: Phys. Rev. Lett. 109, 139904 (2012)] doi: 10.1103/PhysRevLett.106.192301http://doi.org/10.1103/PhysRevLett.106.192301
Z. W. Lin, S. Pal, C. M. Ko, B. A. Li and B. Zhang, Charged particle rapidity distributions at relativistic energies. Phys. Rev. C 64, 011902 (2001). doi: 10.1103/PhysRevC.64.011902http://doi.org/10.1103/PhysRevC.64.011902
X. N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501-3516 (1991). doi: 10.1103/PhysRevD.44.3501http://doi.org/10.1103/PhysRevD.44.3501
M. Gyulassy and X. N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307 (1994). doi: 10.1016/0010-4655(94)90057-4http://doi.org/10.1016/0010-4655(94)90057-4
T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74-90 (1994). doi: 10.1016/0010-4655(94)90132-5http://doi.org/10.1016/0010-4655(94)90132-5
Z. W. Lin and C. M. Ko, Partonic effects on the elliptic flow at RHIC. Phys. Rev. C 65, 034904 (2002). doi: 10.1103/PhysRevC.65.034904http://doi.org/10.1103/PhysRevC.65.034904
Z. W. Lin, Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model. Phys. Rev. C 90, no.1, 014904 (2014). doi: 10.1103/PhysRevC.90.014904http://doi.org/10.1103/PhysRevC.90.014904
D. Molnar and S. A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence. Phys. Rev. Lett. 91, 092301 (2003). doi: 10.1103/PhysRevLett.91.092301http://doi.org/10.1103/PhysRevLett.91.092301
D. Molnar, How AMPT generates large elliptic flow with small cross sections. arXiv:1906.12313 [nucl-th].
A. Bzdak and G. L. Ma, Elliptic and triangular flow in p+Pb and peripheral Pb+Pb collisions from parton scatterings. Phys. Rev. Lett. 113, no.25, 252301 (2014). doi: 10.1103/PhysRevLett.113.252301http://doi.org/10.1103/PhysRevLett.113.252301
G. L. Ma and Z. W. Lin, Predictions for TeV Pb+Pb collisions from a multi-phase transport model. Phys. Rev. C 93, no.5, 054911 (2016). doi: 10.1103/PhysRevC.93.054911http://doi.org/10.1103/PhysRevC.93.054911
Y. He and Z. W. Lin, Improved quark coalescence for a multi-phase transport model. Phys. Rev. C 96, no.1, 014910 (2017). doi: 10.1103/PhysRevC.96.014910http://doi.org/10.1103/PhysRevC.96.014910
L. Y. Zhang, J. H. Chen, Z. W. Lin, Y. G. Ma and S. Zhang, Two-particle angular correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider from a multiphase transport model. Phys. Rev. C 98, no.3, 034912 (2018). doi: 10.1103/PhysRevC.98.034912http://doi.org/10.1103/PhysRevC.98.034912
B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). [erratum: Phys. Rev. C 82, 039903 (2010)] doi: 10.1103/PhysRevC.82.039903http://doi.org/10.1103/PhysRevC.82.039903
Y. Jiang, Z. W. Lin and J. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C 94, no.4, 044910 (2016). [erratum: Phys. Rev. C 95, no.4, 049904 (2017)] doi: 10.1103/PhysRevC.94.044910http://doi.org/10.1103/PhysRevC.94.044910
H. Li, L. G. Pang, Q. Wang and X. L. Xia, Global Λ polarization in heavy-ion collisions from a transport model. Phys. Rev. C 96, no.5, 054908 (2017). doi: 10.1103/PhysRevC.96.054908http://doi.org/10.1103/PhysRevC.96.054908
S. Lan, Z. W. Lin, S. Shi and X. Sun, Effects of finite coverage on global polarization observables in heavy ion collisions. Phys. Lett. B 780, 319-324 (2018). doi: 10.1016/j.physletb.2018.02.076http://doi.org/10.1016/j.physletb.2018.02.076
B. I. Abelev et al. [STAR], Systematic measurements of identified particle spectra in p p, d+ Au and Au+Au collisions from STAR. Phys. Rev. C 79, 034909 (2009). doi: 10.1103/PhysRevC.79.034909http://doi.org/10.1103/PhysRevC.79.034909
J. Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229-245 (1992). doi: 10.1103/PhysRevD.46.229http://doi.org/10.1103/PhysRevD.46.229
C. Gale, S. Jeon and B. Schenke, Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013). doi: 10.1142/S0217751X13400113http://doi.org/10.1142/S0217751X13400113
H. Li, L. He, Z. W. Lin, D. Molnar, F. Wang and W. Xie, Origin of the mass splitting of elliptic anisotropy in a multiphase transport model. Phys. Rev. C 93, no.5, 051901 (2016). doi: 10.1103/PhysRevC.93.051901http://doi.org/10.1103/PhysRevC.93.051901
H. Li, L. He, Z. W. Lin, D. Molnar, F. Wang and W. Xie, Origin of the mass splitting of azimuthal anisotropies in a multiphase transport model. Phys. Rev. C 96, no.1, 014901 (2017). doi: 10.1103/PhysRevC.96.014901http://doi.org/10.1103/PhysRevC.96.014901
D. Molnar and M. Gyulassy, Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC. Nucl. Phys. A 697, 495-520 (2002). [erratum: Nucl. Phys. A 703, 893-894 (2002)]. doi: 10.1016/S0375-9474(01)01224-6http://doi.org/10.1016/S0375-9474(01)01224-6
V. Khachatryan et al. [CMS], Observation of long-range near-side angular correlations in proton-proton collisions at the LHC. JHEP 09, 091 (2010). doi: 10.1007/JHEP09(2010)091http://doi.org/10.1007/JHEP09(2010)091
A. Adare et al. [PHENIX], Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d+Au collisions at =200 GeV. Phys. Rev. Lett. 114, no.19, 192301 (2015). doi: 10.1103/PhysRevLett.114.192301http://doi.org/10.1103/PhysRevLett.114.192301
C. Aidala et al. [PHENIX], Creation of quark–gluon plasma droplets with three distinct geometries. Nature Phys. 15, no.3, 214-220 (2019). doi: 10.1038/s41567-018-0360-0http://doi.org/10.1038/s41567-018-0360-0
P. Bozek, Elliptic flow in proton-proton collisions at sqrt(S) = 7 TeV. Eur. Phys. J. C 71, 1530 (2011). doi: 10.1140/epjc/s10052-010-1530-0http://doi.org/10.1140/epjc/s10052-010-1530-0
P. Bozek and W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions. Phys. Lett. B 718, 1557-1561 (2013). doi: 10.1016/j.physletb.2012.12.051http://doi.org/10.1016/j.physletb.2012.12.051
L. He, T. Edmonds, Z. W. Lin, F. Liu, D. Molnar and F. Wang, Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models. Phys. Lett. B 753, 506-510 (2016). doi: 10.1016/j.physletb.2015.12.051http://doi.org/10.1016/j.physletb.2015.12.051
Z. W. Lin, L. He, T. Edmonds, F. Liu, D. Molnar and F. Wang, Elliptic anisotropy v2 may be dominated by particle escape instead of hydrodynamic flow. Nucl. Phys. A 956, 316-319 (2016). doi: 10.1016/j.nuclphysa.2016.01.017http://doi.org/10.1016/j.nuclphysa.2016.01.017
A. Kurkela, U. A. Wiedemann and B. Wu, Nearly isentropic flow at sizeable η/s. Phys. Lett. B 783, 274-279 (2018). doi: 10.1016/j.physletb.2018.06.064http://doi.org/10.1016/j.physletb.2018.06.064
U. W. Heinz and J. S. Moreland, Hydrodynamic flow in small systems or: “How the heck is it possible that a system emitting only a dozen particles can be described by fluid dynamics?”. J. Phys. Conf. Ser. 1271, no.1, 012018 (2019). doi: 10.1088/1742-6596/1271/1/012018http://doi.org/10.1088/1742-6596/1271/1/012018
B. Schenke, The smallest fluid on earth. arXiv:2102.11189 [nucl-th].
K. Dusling, M. Mace and R. Venugopalan, Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions. Phys. Rev. Lett. 120, no.4, 042002 (2018). doi: 10.1103/PhysRevLett.120.042002http://doi.org/10.1103/PhysRevLett.120.042002
M. Mace, V. V. Skokov, P. Tribedy and R. Venugopalan, Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate. Phys. Rev. Lett. 121, no.5, 052301 (2018). [erratum: Phys. Rev. Lett. 123, no.3, 039901 (2019)] doi: 10.1103/PhysRevLett.121.052301http://doi.org/10.1103/PhysRevLett.121.052301
R. D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at TeV. Phys. Lett. B 774, 351-356 (2017). doi: 10.1016/j.physletb.2017.09.077http://doi.org/10.1016/j.physletb.2017.09.077
A. Kurkela, U. A. Wiedemann and B. Wu, Flow in AA and pA as an interplay of fluid-like and non-fluid like excitations. Eur. Phys. J. C 79, no.11, 965 (2019). doi: 10.1140/epjc/s10052-019-7428-6http://doi.org/10.1140/epjc/s10052-019-7428-6
R. A. Lacey [STAR], Long-range collectivity in small collision-systems with two- and four-particle correlations @ STAR. Nucl. Phys. A 1005, 122041 (2021). doi: 10.1016/j.nuclphysa.2020.122041http://doi.org/10.1016/j.nuclphysa.2020.122041
U. A. Acharya et al. [PHENIX], Kinematic dependence of azimuthal anisotropies in p + Au, d + Au, 3He + Au at = 200 GeV. arXiv:2107.06634 [hep-ex].
The Open Standard Codes and Routines (OSCAR) project at https://karman.physics.purdue.edu/OSCAR-old/https://karman.physics.purdue.edu/OSCAR-old/
Source codes of various AMPT versions are available at http://myweb.ecu.edu/linz/ampt/http://myweb.ecu.edu/linz/ampt/
B. I. Abelev et al. [STAR], Observation of an antimatter hypernucleus. Science 328, 58-62 (2010). doi: 10.1126/science.1183980http://doi.org/10.1126/science.1183980
N. Sharma [ALICE], Production of nuclei and antinuclei in pp and Pb-Pb collisions with ALICE at the LHC. J. Phys. G 38, 124189 (2011). doi: 10.1088/0954-3899/38/12/124189http://doi.org/10.1088/0954-3899/38/12/124189
K. J. Sun, L. W. Chen, C. M. Ko and Z. Xu, Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 774, 103-107 (2017). doi: 10.1016/j.physletb.2017.09.056http://doi.org/10.1016/j.physletb.2017.09.056
E. Shuryak and J. M. Torres-Rincon, Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions. Phys. Rev. C 100, no.2, 024903 (2019). doi: 10.1103/PhysRevC.100.024903http://doi.org/10.1103/PhysRevC.100.024903
A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov and N. Xu, Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rept. 853, 1-87 (2020). doi: 10.1016/j.physrep.2020.01.005http://doi.org/10.1016/j.physrep.2020.01.005
X. Luo, S. Shi, N. Xu and Y. Zhang, A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particles 3, no.2, 278-307 (2020). doi: 10.3390/particles3020022http://doi.org/10.3390/particles3020022
J. Cleymans and H. Satz, Thermal hadron production in high-energy heavy ion collisions. Z. Phys. C 57, 135-148 (1993). doi: 10.1007/BF01555746http://doi.org/10.1007/BF01555746
P. Braun-Munzinger, V. Koch, T. Schäfer and J. Stachel, Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 621, 76-126 (2016). doi: 10.1016/j.physrep.2015.12.003http://doi.org/10.1016/j.physrep.2015.12.003
H. Sato and K. Yazaki, On the coalescence model for high-energy nuclear reactions. Phys. Lett. B 98, 153-157 (1981). doi: 10.1016/0370-2693(81)90976-Xhttp://doi.org/10.1016/0370-2693(81)90976-X
L. P. Csernai and J. I. Kapusta, Entropy and cluster production in nuclear collisions. Phys. Rept. 131, 223-318 (1986). doi: 10.1016/0370-1573(86)90031-1http://doi.org/10.1016/0370-1573(86)90031-1
H. H. Gutbrod, A. Sandoval, P. J. Johansen, A. M. Poskanzer, J. Gosset, W. G. Meyer, G. D. Westfall and R. Stock, Final state interactions in the production of hydrogen and helium isotopes by relativistic heavy ions on uranium. Phys. Rev. Lett. 37, 667-670 (1976). doi: 10.1103/PhysRevLett.37.667http://doi.org/10.1103/PhysRevLett.37.667
L. Zhu, C. M. Ko and X. Yin, Light (anti-)nuclei production and flow in relativistic heavy-ion collisions. Phys. Rev. C 92, no.6, 064911 (2015). doi: 10.1103/PhysRevC.92.064911http://doi.org/10.1103/PhysRevC.92.064911
K. J. Sun and L. W. Chen, Analytical coalescence formula for particle production in relativistic heavy-ion collisions. Phys. Rev. C 95, no.4, 044905 (2017). doi: 10.1103/PhysRevC.95.044905http://doi.org/10.1103/PhysRevC.95.044905
P. Danielewicz and G. F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy ion reactions. Nucl. Phys. A 533, 712-748 (1991). doi: 10.1016/0375-9474(91)90541-Dhttp://doi.org/10.1016/0375-9474(91)90541-D
Y. Oh and C. M. Ko, Elliptic flow of deuterons in relativistic heavy-ion collisions. Phys. Rev. C 76, 054910 (2007). doi: 10.1103/PhysRevC.76.054910http://doi.org/10.1103/PhysRevC.76.054910
Y. Oh, Z. W. Lin and C. M. Ko, Deuteron production and elliptic flow in relativistic heavy ion collisions. Phys. Rev. C 80, 064902 (2009). doi: 10.1103/PhysRevC.80.064902http://doi.org/10.1103/PhysRevC.80.064902
R. M. Heinz, O. E. Overseth, D. E. Pellett and M. L. Perl, Differential Cross Sections for p+p – > d+pi+ from 1 to 3 BeV. Phys. Rev. 167, 1232-1239 (1968). doi: 10.1103/PhysRev.167.1232http://doi.org/10.1103/PhysRev.167.1232
H. L. Anderson, D. A. Larson, L. C. Myrianthopoulos, L. Dubal, C. K. Hargrove, E. P. Hincks, R. J. Mckee, H. Mes, D. Kessler and A. C. Thompson, Measurements of the differential cross-section of the reaction p p → d pi+ from 3.0 to 5.0 gev/c. Phys. Rev. D 9, 580-596 (1974). doi: 10.1103/PhysRevD.9.580http://doi.org/10.1103/PhysRevD.9.580
F. Shimizu, Y. Kubota, H. Koiso, F. Sai, S. Sakamoto and S. S. Yamamoto, Measurement of the p p cross-sections in the momentum range 0.9-2.0 GeV/c. Nucl. Phys. A 386, 571-588 (1982). doi: 10.1016/0375-9474(82)90037-9http://doi.org/10.1016/0375-9474(82)90037-9
J. Boswell, R. Altemus, R. Minehart, L. Orphanos, H. J. Ziock and E. A. Wadlinger, Differential cross-section for the pi+ d → p p reaction from 80-MeV to 417-MeV. Phys. Rev. C 25, 2540-2549 (1982). doi: 10.1103/PhysRevC.25.2540http://doi.org/10.1103/PhysRevC.25.2540
M. Y. Borkovsky et al., Measurement of the differential cross-sections for the pi+ d → p p reaction at pion energies of 280-MeV, 300-MeV, 330-MeV, 357-MeV, 390-MeV, 420-MeV and 450-MeV. J. Phys. G 11, 69-83 (1985). doi: 10.1088/0305-4616/11/1/012http://doi.org/10.1088/0305-4616/11/1/012
S. I. Gogolev et al., Total cross-section of the reaction pi+ d → p p at pion energies 26-MeV to 40-MeV. Phys. Lett. B 300, 24-28 (1993). doi: 10.1016/0370-2693(93)90742-Zhttp://doi.org/10.1016/0370-2693(93)90742-Z
B. A. Li and C. M. Ko, Formation of superdense hadronic matter in high-energy heavy ion collisions. Phys. Rev. C 52, 2037-2063 (1995). doi: 10.1103/PhysRevC.52.2037http://doi.org/10.1103/PhysRevC.52.2037
B. A. Li and C. M. Ko, Excitation functions in central Au + Au collisions from SIS / GSI to AGS Brookhaven. Nucl. Phys. A 601, 457-472 (1996). doi: 10.1016/0375-9474(96)00037-1http://doi.org/10.1016/0375-9474(96)00037-1
B. Li, A. T. Sustich, B. Zhang and C. M. Ko, Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267-352 (2001). doi: 10.1142/S0218301301000575http://doi.org/10.1142/S0218301301000575
R. A. Arndt, I. I. Strakovsky, R. L. Workman and D. V. Bugg, Analysis of the reaction pi+ d → p p to 500-MeV. Phys. Rev. C 48, 1926-1938 (1993). doi: 10.1103/PhysRevC.49.1229http://doi.org/10.1103/PhysRevC.49.1229
M. Gyulassy, K. Frankel and E. a. Remler, Deuteron formation in nuclear collisions. Nucl. Phys. A 402, 596-611 (1983). doi: 10.1016/0375-9474(83)90222-1http://doi.org/10.1016/0375-9474(83)90222-1
D. Oliinychenko, L. G. Pang, H. Elfner and V. Koch, Microscopic study of deuteron production in PbPb collisions at via hydrodynamics and a hadronic afterburner. Phys. Rev. C 99, no.4, 044907 (2019). doi: 10.1103/PhysRevC.99.044907http://doi.org/10.1103/PhysRevC.99.044907
K. J. Sun, C. M. Ko and Z. W. Lin, Light nuclei production in a multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 103, no.6, 064909 (2021). doi: 10.1103/PhysRevC.103.064909http://doi.org/10.1103/PhysRevC.103.064909
K. J. Sun, C. M. Ko and B. Dönigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider. Phys. Lett. B 792, 132-137 (2019). doi: 10.1016/j.physletb.2019.03.033http://doi.org/10.1016/j.physletb.2019.03.033
B. Andersson, G. Gustafson and B. Soderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). doi: 10.1007/BF01407824http://doi.org/10.1007/BF01407824
B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Parton fragmentation and string dynamics. Phys. Rept. 97, 31-145 (1983). doi: 10.1016/0370-1573(83)90080-7http://doi.org/10.1016/0370-1573(83)90080-7
Z. W. Lin, C. M. Ko and S. Pal, Partonic effects on pion interferometry at RHIC. Phys. Rev. Lett. 89, 152301 (2002). doi: 10.1103/PhysRevLett.89.152301http://doi.org/10.1103/PhysRevLett.89.152301
J. Xu and C. M. Ko, Pb-Pb collisions at TeV in a multiphase transport model. Phys. Rev. C 83, 034904 (2011). doi: 10.1103/PhysRevC.83.034904http://doi.org/10.1103/PhysRevC.83.034904
J. S. Schwinger, Gauge invariance and mass. II. Phys. Rev. 128, 2425-2429 (1962). doi: 10.1103/PhysRev.128.2425http://doi.org/10.1103/PhysRev.128.2425
A. Adare et al. [PHENIX], Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at =200 GeV. Phys. Rev. C 87, no.3, 034911 (2013). doi: 10.1103/PhysRevC.87.034911http://doi.org/10.1103/PhysRevC.87.034911
B. Abelev et al. [ALICE], Centrality determination of Pb-Pb collisions at = 2.76 TeV with ALICE. Phys. Rev. C 88, no.4, 044909 (2013). doi: 10.1103/PhysRevC.88.044909http://doi.org/10.1103/PhysRevC.88.044909
S. S. Adler et al. [PHENIX], Identified charged particle spectra and yields in Au+Au collisions at S(NN)**1/2 = 200-GeV. Phys. Rev. C 69, 034909 (2004). doi: 10.1103/PhysRevC.69.034909http://doi.org/10.1103/PhysRevC.69.034909
I. G. Bearden et al. [BRAHMS], Charged meson rapidity distributions in central Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett. 94, 162301 (2005). doi: 10.1103/PhysRevLett.94.162301http://doi.org/10.1103/PhysRevLett.94.162301
B. Abelev et al. [ALICE], Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 88, 044910 (2013). doi: 10.1103/PhysRevC.88.044910http://doi.org/10.1103/PhysRevC.88.044910
Y. Gu [PHENIX], PHENIX measurements of higher-order flow harmonics for identified charged hadrons in Au+Au collisions at GeV. Nucl. Phys. A 904-905, 353c-356c (2013). doi: 10.1016/j.nuclphysa.2013.02.022http://doi.org/10.1016/j.nuclphysa.2013.02.022
G. Aad et al. [ATLAS], Measurement of the azimuthal anisotropy for charged particle production in TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). doi: 10.1103/PhysRevC.86.014907http://doi.org/10.1103/PhysRevC.86.014907
S. Chatrchyan et al. [CMS], Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at =2.76 TeV. Phys. Rev. C 87, no.1, 014902 (2013). doi: 10.1103/PhysRevC.87.014902http://doi.org/10.1103/PhysRevC.87.014902
G. Aad et al. [ATLAS], Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at TeV with the ATLAS detector. Eur. Phys. J. C 74, no.8, 2982 (2014). doi: 10.1140/epjc/s10052-014-2982-4http://doi.org/10.1140/epjc/s10052-014-2982-4
B. B. Back et al. [PHOBOS], Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 72, 051901 (2005). doi: 10.1103/PhysRevC.72.051901http://doi.org/10.1103/PhysRevC.72.051901
V. Khachatryan et al. [CMS], Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions. Phys. Rev. C 92, no.3, 034911 (2015). doi: 10.1103/PhysRevC.92.034911http://doi.org/10.1103/PhysRevC.92.034911
L. G. Pang, H. Petersen, G. Y. Qin, V. Roy and X. N. Wang, Decorrelation of anisotropic flow along the longitudinal direction. Eur. Phys. J. A 52, no.4, 97 (2016). doi: 10.1140/epja/i2016-16097-xhttp://doi.org/10.1140/epja/i2016-16097-x
B. Zhang, ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193-206 (1998). doi: 10.1016/S0010-4655(98)00010-1http://doi.org/10.1016/S0010-4655(98)00010-1
V. Minissale, F. Scardina and V. Greco, Hadrons from coalescence plus fragmentation in AA collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider. Phys. Rev. C 92, no.5, 054904 (2015). doi: 10.1103/PhysRevC.92.054904http://doi.org/10.1103/PhysRevC.92.054904
K. C. Han, R. J. Fries and C. M. Ko, Jet fragmentation via recombination of parton showers. Phys. Rev. C 93, no.4, 045207 (2016). doi: 10.1103/PhysRevC.93.045207http://doi.org/10.1103/PhysRevC.93.045207
Y. He and Z. W. Lin, Baryon spectra and antiparticle-to-particle ratios from the improved AMPT model. EPJ Web Conf. 171, 14004 (2018). doi: 10.1051/epjconf/201817114004http://doi.org/10.1051/epjconf/201817114004
L. Y. Zhang, J. H. Chen, Z. W. Lin, Y. G. Ma and S. Zhang, Two-particle angular correlations in heavy ion collisions from a multiphase transport model. Phys. Rev. C 99, no.5, 054904 (2019). doi: 10.1103/PhysRevC.99.054904http://doi.org/10.1103/PhysRevC.99.054904
C. Suire [STAR], Omega- and anti-Omega+ production in Au+Au collisions at s(NN)**(1/2) = 130-GeV and 200-GeV. Nucl. Phys. A 715, 470-4735 (2003). doi: 10.1016/S0375-9474(02)01451-3http://doi.org/10.1016/S0375-9474(02)01451-3
J. Adams et al. [STAR], Scaling properties of hyperon production in Au+Au Collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett. 98, 062301 (2007). doi: 10.1103/PhysRevLett.98.062301http://doi.org/10.1103/PhysRevLett.98.062301
S. Schuchmann, Modification of Ks0 and transverse momentum spectra in Pb-Pb collisions at = 2.76 TeV with ALICE. doi: 10.1007/978-3-319-43458-2http://doi.org/10.1007/978-3-319-43458-2
B. B. Abelev et al. [ALICE], Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 728, 216-227 (2014). [erratum: Phys. Lett. B 734, 409-410 (2014)]. doi: 10.1016/j.physletb.2014.05.052http://doi.org/10.1016/j.physletb.2014.05.052
J. Zimanyi, T. S. Biro, T. Csorgo and P. Levai, Quark liberation and coalescence at CERN SPS. Phys. Lett. B 472, 243-246 (2000). doi: 10.1016/S0370-2693(99)01461-6http://doi.org/10.1016/S0370-2693(99)01461-6
C. Zhang, L. Zheng, F. Liu, S. Shi and Z. W. Lin, Update of a multiphase transport model with modern parton distribution functions and nuclear shadowing. Phys. Rev. C 99, no.6, 064906 (2019). doi: 10.1103/PhysRevC.99.064906http://doi.org/10.1103/PhysRevC.99.064906
C. Nonaka, B. Muller, S. A. Bass and M. Asakawa, Possible resolutions of the D-paradox. Phys. Rev. C 71, 051901 (2005). doi: 10.1103/PhysRevC.71.051901http://doi.org/10.1103/PhysRevC.71.051901
V. Greco, Phase-space coalescence for heavy and light quarks at RHIC. Eur. Phys. J. ST 155, 45-59 (2008). doi: 10.1140/epjst/e2008-00588-yhttp://doi.org/10.1140/epjst/e2008-00588-y
L. Zheng, C. Zhang, S. S. Shi and Z. W. Lin, Improvement of heavy flavor production in a multiphase transport model updated with modern nuclear parton distribution functions. Phys. Rev. C 101, no.3, 034905 (2020). doi: 10.1103/PhysRevC.101.034905http://doi.org/10.1103/PhysRevC.101.034905
T. Shao, J. Chen, C. M. Ko and Z. W. Lin, Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model. Phys. Rev. C 102, no.1, 014906 (2020). doi: 10.1103/PhysRevC.102.014906http://doi.org/10.1103/PhysRevC.102.014906
Z. W. Lin, Extension of the Bjorken energy density formula of the initial state for relativistic heavy ion collisions. Phys. Rev. C 98, no.3, 034908 (2018). doi: 10.1103/PhysRevC.98.034908http://doi.org/10.1103/PhysRevC.98.034908
T. Mendenhall and Z. W. Lin, Calculating the initial energy density in heavy ion collisions by including the finite nuclear thickness. Phys. Rev. C 103, no.2, 024907 (2021). doi: 10.1103/PhysRevC.103.024907http://doi.org/10.1103/PhysRevC.103.024907
M. Okai, K. Kawaguchi, Y. Tachibana and T. Hirano, New approach to initializing hydrodynamic fields and mini-jet propagation in quark-gluon fluids. Phys. Rev. C 95, no.5, 054914 (2017). doi: 10.1103/PhysRevC.95.054914http://doi.org/10.1103/PhysRevC.95.054914
C. Shen, G. Denicol, C. Gale, S. Jeon, A. Monnai and B. Schenke, A hybrid approach to relativistic heavy-ion collisions at the RHIC BES energies. Nucl. Phys. A 967, 796-799 (2017). doi: 10.1016/j.nuclphysa.2017.06.008http://doi.org/10.1016/j.nuclphysa.2017.06.008
J. D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140-151 (1983). doi: 10.1103/PhysRevD.27.140http://doi.org/10.1103/PhysRevD.27.140
A web interface that calculates the average initial energy density at mid-pseudorapidity of central AA collisions with the semi-analytical method of Ref. [125] is available at http://myweb.ecu.edu/linz/densities/
E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Super collider physics. Rev. Mod. Phys. 56, 579-707 (1984). doi: 10.1103/RevModPhys.56.579http://doi.org/10.1103/RevModPhys.56.579
T. K. Gaisser and F. Halzen, Soft hard scattering in the TeV range. Phys. Rev. Lett. 54, 1754 (1985). doi: 10.1103/PhysRevLett.54.1754http://doi.org/10.1103/PhysRevLett.54.1754
G. Pancheri and Y. N. Srivastava, Low pT jets and the rise with energy of the inelastic cross-section. Phys. Lett. B 182, 199-207 (1986). doi: 10.1016/0370-2693(86)91577-7http://doi.org/10.1016/0370-2693(86)91577-7
S. Forte and G. Watt, Progress in the determination of the partonic structure of the proton. Ann. Rev. Nucl. Part. Sci. 63, 291-328 (2013). doi: 10.1146/annurev-nucl-102212-170607http://doi.org/10.1146/annurev-nucl-102212-170607
A. De Roeck and R. S. Thorne, Structure functions. Prog. Part. Nucl. Phys. 66, 727-781 (2011). doi: 10.1016/j.ppnp.2011.06.001http://doi.org/10.1016/j.ppnp.2011.06.001
K. Kovařík, P. M. Nadolsky and D. E. Soper, Hadronic structure in high-energy collisions. Rev. Mod. Phys. 92, no.4, 045003 (2020). doi: 10.1103/RevModPhys.92.045003http://doi.org/10.1103/RevModPhys.92.045003
H. L. Lai, J. Huston, S. Mrenna, P. Nadolsky, D. Stump, W. K. Tung and C. P. Yuan, Parton distributions for event generators. JHEP 04, 035 (2010). doi: 10.1007/JHEP04(2010)035http://doi.org/10.1007/JHEP04(2010)035
J. C. Collins and X. M. Zu, Parton distribution functions suitable for Monte Carlo event generators. JHEP 06, 018 (2002). doi: 10.1088/1126-6708/2002/06/018http://doi.org/10.1088/1126-6708/2002/06/018
T. Kasemets and T. Sjostrand, A Comparison of new MC-adapted Parton Densities. Eur. Phys. J. C 69, 19-29 (2010). doi: 10.1140/epjc/s10052-010-1391-6http://doi.org/10.1140/epjc/s10052-010-1391-6
D. W. Duke and J. F. Owens, Q**2 dependent parametrizations of parton distribution functions. Phys. Rev. D 30, 49-54 (1984). doi: 10.1103/PhysRevD.30.49http://doi.org/10.1103/PhysRevD.30.49
Z. W. Lin, Current status and further improvements of a multi-phase transport (AMPT) model. Indian J. Phys. 85, 837-841 (2011). doi: 10.1007/s12648-011-0086-7http://doi.org/10.1007/s12648-011-0086-7
J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). doi: 10.1088/1126-6708/2002/07/012http://doi.org/10.1088/1126-6708/2002/07/012
W. T. Deng, X. N. Wang and R. Xu, Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider. Phys. Rev. C 83, 014915 (2011). doi: 10.1103/PhysRevC.83.014915http://doi.org/10.1103/PhysRevC.83.014915
M. Gluck, E. Reya and A. Vogt, Dynamical parton distributions of the proton and small x physics. Z. Phys. C 67, 433-448 (1995). doi: 10.1007/BF01624586http://doi.org/10.1007/BF01624586
K. J. Eskola, P. Paakkinen, H. Paukkunen and C. A. Salgado, EPPS16: Nuclear parton distributions with LHC data. Eur. Phys. J. C 77, no.3, 163 (2017). doi: 10.1140/epjc/s10052-017-4725-9http://doi.org/10.1140/epjc/s10052-017-4725-9
D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global analysis of nuclear parton distributions. Phys. Rev. D 85, 074028 (2012). doi: 10.1103/PhysRevD.85.074028http://doi.org/10.1103/PhysRevD.85.074028
K. Kovarik et al., nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D 93, no.8, 085037 (2016). doi: 10.1103/PhysRevD.93.085037http://doi.org/10.1103/PhysRevD.93.085037
M. Hirai, S. Kumano and T. H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C 76, 065207 (2007). doi: 10.1103/PhysRevC.76.065207http://doi.org/10.1103/PhysRevC.76.065207
R. Abdul Khalek et al. [NNPDF], Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider. Eur. Phys. J. C 79, no.6, 471 (2019). doi: 10.1140/epjc/s10052-019-6983-1http://doi.org/10.1140/epjc/s10052-019-6983-1
K. J. Eskola, Shadowing effects on quark and gluon production in ultrarelativistic heavy ion collisions. Z. Phys. C 51, 633-642 (1991). doi: 10.1007/BF01565590http://doi.org/10.1007/BF01565590
V. Emel’yanov, A. Khodinov, S. R. Klein and R. Vogt, The Effect of shadowing on initial conditions, transverse energy and hard probes in ultrarelativistic heavy ion collisions. Phys. Rev. C 61, 044904 (2000). doi: 10.1103/PhysRevC.61.044904http://doi.org/10.1103/PhysRevC.61.044904
S. R. Klein and R. Vogt, Inhomogeneous shadowing effects on J/psi production in dA collisions. Phys. Rev. Lett. 91, 142301 (2003). doi: 10.1103/PhysRevLett.91.142301http://doi.org/10.1103/PhysRevLett.91.142301
L. Frankfurt, V. Guzey and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nuclei. Phys. Rept. 512, 255-393 (2012). doi: 10.1016/j.physrep.2011.12.002http://doi.org/10.1016/j.physrep.2011.12.002
J. L. Nagle, A. D. Frawley, L. A. L. Levy and M. G. Wysocki, Theoretical modeling of J/psi yield modifications in proton (deuteron) - nucleus collisions at high energy. Phys. Rev. C 84, 044911 (2011). doi: 10.1103/PhysRevC.84.044911http://doi.org/10.1103/PhysRevC.84.044911
B. Wu, Factorization and transverse phase-space parton distributions. arXiv:2102.12916 [hep-ph].
I. Helenius, K. J. Eskola, H. Honkanen and C. A. Salgado, Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes. JHEP 07, 073 (2012). doi: 10.1007/JHEP07(2012)073http://doi.org/10.1007/JHEP07(2012)073
K. J. Eskola, V. J. Kolhinen and P. V. Ruuskanen, Scale evolution of nuclear parton distributions. Nucl. Phys. B 535, 351-371 (1998). doi: 10.1016/S0550-3213(98)00589-6http://doi.org/10.1016/S0550-3213(98)00589-6
K. J. Eskola, H. Paukkunen and C. A. Salgado, EPS09: A new generation of nlo and lo nuclear parton distribution functions. JHEP 04, 065 (2009). doi: 10.1088/1126-6708/2009/04/065http://doi.org/10.1088/1126-6708/2009/04/065
X. N. Wang, Role of multiple mini-jets in high-energy hadronic reactions. Phys. Rev. D 43, 104-112 (1991). doi: 10.1103/PhysRevD.43.104http://doi.org/10.1103/PhysRevD.43.104
L. D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233-2241 (1994). doi: 10.1103/PhysRevD.49.2233http://doi.org/10.1103/PhysRevD.49.2233
C. Zhang, L. Zheng, S. Shi and Z. W. Lin, Using local nuclear scaling of initial condition parameters to improve the system size dependence of transport model descriptions of nuclear collisions. Phys. Rev. C. 104, 014908 (2021).
B. Muller and X. N. Wang, Probing parton thermalization time with charm production. Phys. Rev. Lett. 68, 2437-2439 (1992). doi: 10.1103/PhysRevLett.68.2437http://doi.org/10.1103/PhysRevLett.68.2437
Z. W. Lin and M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51, 2177-2187 (1995). [erratum: Phys. Rev. C 52, 440 (1995)] doi: 10.1103/PhysRevC.52.440http://doi.org/10.1103/PhysRevC.52.440
X. Dong, Y. J. Lee and R. Rapp, Open heavy-flavor production in heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 417-445 (2019). doi: 10.1146/annurev-nucl-101918-023806http://doi.org/10.1146/annurev-nucl-101918-023806
S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina and V. Greco, Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions. Phys. Lett. B 768, 260-264 (2017). doi: 10.1016/j.physletb.2017.02.046http://doi.org/10.1016/j.physletb.2017.02.046
S. Chatterjee and P. Bożek, Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett. 120, no.19, 192301 (2018). doi: 10.1103/PhysRevLett.120.192301http://doi.org/10.1103/PhysRevLett.120.192301
M. Nasim and S. Singha, Directed flow of open charm in Au+Au collisions at = 200 GeV using a quark coalescence model. Phys. Rev. C 97, no.6, 064917 (2018). doi: 10.1103/PhysRevC.97.064917http://doi.org/10.1103/PhysRevC.97.064917
M. He, R. J. Fries and R. Rapp, Ds-meson as quantitative probe of diffusion and hadronization in nuclear collisions. Phys. Rev. Lett. 110, no.11, 112301 (2013). doi: 10.1103/PhysRevLett.110.112301http://doi.org/10.1103/PhysRevLett.110.112301
K. Huggins and R. Rapp, A T-Matrix calculation for in-medium heavy-quark gluon scattering. Nucl. Phys. A 896, 24-45 (2012). doi: 10.1016/j.nuclphysa.2012.09.008http://doi.org/10.1016/j.nuclphysa.2012.09.008
T. Lang, H. van Hees, J. Steinheimer, G. Inghirami and M. Bleicher, Heavy quark transport in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider within the UrQMD hybrid model. Phys. Rev. C 93, no.1, 014901 (2016). doi: 10.1103/PhysRevC.93.014901http://doi.org/10.1103/PhysRevC.93.014901
S. Cao et al., Toward the determination of heavy-quark transport coefficients in quark-gluon plasma. Phys. Rev. C 99, no.5, 054907 (2019). doi: 10.1103/PhysRevC.99.054907http://doi.org/10.1103/PhysRevC.99.054907
Y. Xu et al., Resolving discrepancies in the estimation of heavy quark transport coefficients in relativistic heavy-ion collisions. Phys. Rev. C 99, no.1, 014902 (2019). doi: 10.1103/PhysRevC.99.014902http://doi.org/10.1103/PhysRevC.99.014902
M. L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295-345 (1992). doi: 10.1016/0550-3213(92)90435-Ehttp://doi.org/10.1016/0550-3213(92)90435-E
B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive D*+- production in p anti-p collisions with massive charm quarks. Phys. Rev. D 71, 014018 (2005). doi: 10.1103/PhysRevD.71.014018http://doi.org/10.1103/PhysRevD.71.014018
I. Helenius and H. Paukkunen, Revisiting the D-meson hadroproduction in general-mass variable flavour number scheme. JHEP 05, 196 (2018). doi: 10.1007/JHEP05(2018)196http://doi.org/10.1007/JHEP05(2018)196
M. Cacciari, P. Nason and R. Vogt, QCD predictions for charm and bottom production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). doi: 10.1103/PhysRevLett.95.122001http://doi.org/10.1103/PhysRevLett.95.122001
M. Djordjevic and M. Djordjevic, Predictions of heavy-flavor suppression at 5.1 TeV Pb + Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C 92, no.2, 024918 (2015). doi: 10.1103/PhysRevC.92.024918http://doi.org/10.1103/PhysRevC.92.024918
J. Xu, J. Liao and M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0. JHEP 02, 169 (2016). doi: 10.1007/JHEP02(2016)169http://doi.org/10.1007/JHEP02(2016)169
A. Beraudo, A. De Pace, M. Monteno, M. Nardi and F. Prino, Heavy flavors in heavy-ion collisions: quenching, flow and correlations. Eur. Phys. J. C 75, no.3, 121 (2015). doi: 10.1140/epjc/s10052-015-3336-6http://doi.org/10.1140/epjc/s10052-015-3336-6
M. He, R. J. Fries and R. Rapp, Heavy flavor at the large hadron collider in a strong coupling approach. Phys. Lett. B 735, 445-450 (2014). doi: 10.1016/j.physletb.2014.05.050http://doi.org/10.1016/j.physletb.2014.05.050
S. Cao, G. Y. Qin and S. A. Bass, Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavy-ion collisions. Phys. Rev. C 92, no.2, 024907 (2015). doi: 10.1103/PhysRevC.92.024907http://doi.org/10.1103/PhysRevC.92.024907
J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions. J. Phys. G 42, no.11, 115106 (2015). doi: 10.1088/0954-3899/42/11/115106http://doi.org/10.1088/0954-3899/42/11/115106
S. Cao, T. Luo, G. Y. Qin and X. N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies. Phys. Lett. B 777, 255-259 (2018). doi: 10.1016/j.physletb.2017.12.023http://doi.org/10.1016/j.physletb.2017.12.023
M. Nahrgang, J. Aichelin, P. B. Gossiaux and K. Werner, Influence of hadronic bound states above Tc on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider. Phys. Rev. C 89, no.1, 014905 (2014). doi: 10.1103/PhysRevC.89.014905http://doi.org/10.1103/PhysRevC.89.014905
T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 93, no.3, 034906 (2016). doi: 10.1103/PhysRevC.93.034906http://doi.org/10.1103/PhysRevC.93.034906
S. K. Das, F. Scardina, S. Plumari and V. Greco, Toward a solution to the RAA and v2 puzzle for heavy quarks. Phys. Lett. B 747, 260-264 (2015). doi: 10.1016/j.physletb.2015.06.003http://doi.org/10.1016/j.physletb.2015.06.003
S. Plumari, V. Minissale, S. K. Das, G. Coci and V. Greco, Charmed Hadrons from Coalescence plus Fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. C 78, no.4, 348 (2018). doi: 10.1140/epjc/s10052-018-5828-7http://doi.org/10.1140/epjc/s10052-018-5828-7
B. Zhang, L. W. Chen and C. M. Ko, Charm elliptic flow at RHIC. Phys. Rev. C 72, 024906 (2005). doi: 10.1103/PhysRevC.72.024906http://doi.org/10.1103/PhysRevC.72.024906
H. Li, Z. W. Lin and F. Wang, Charm quarks are more hydrodynamic than light quarks in final-state elliptic flow. Phys. Rev. C 99, no.4, 044911 (2019). doi: 10.1103/PhysRevC.99.044911http://doi.org/10.1103/PhysRevC.99.044911
A. Kurkela, A. Mazeliauskas, J. F. Paquet, S. Schlichting and D. Teaney, Matching the nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory. Phys. Rev. Lett. 122, no.12, 122302 (2019). doi: 10.1103/PhysRevLett.122.122302http://doi.org/10.1103/PhysRevLett.122.122302
A. Kurkela, A. Mazeliauskas, J. F. Paquet, S. Schlichting and D. Teaney, Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. Phys. Rev. C 99, no.3, 034910 (2019). doi: 10.1103/PhysRevC.99.034910http://doi.org/10.1103/PhysRevC.99.034910
C. Lourenco and H. K. Wohri, Heavy flavour hadro-production from fixed-target to collider energies. Phys. Rept. 433, 127-180 (2006). doi: 10.1016/j.physrep.2006.05.005http://doi.org/10.1016/j.physrep.2006.05.005
A. Adare et al. [PHENIX], Heavy quark production in p+p and energy loss and flow of heavy quarks in Au+Au collisions at GeV. Phys. Rev. C 84, 044905 (2011). doi: 10.1103/PhysRevC.84.044905http://doi.org/10.1103/PhysRevC.84.044905
L. Adamczyk et al. [STAR], Measurements of D0 and D* production in p+p collisions at GeV. Phys. Rev. D 86, 072013 (2012). doi: 10.1103/PhysRevD.86.072013http://doi.org/10.1103/PhysRevD.86.072013
R. Aaij et al. [LHCb], Prompt charm production in pp collisions at sqrt(s)=7 TeV. Nucl. Phys. B 871, 1-20 (2013). doi: 10.1016/j.nuclphysb.2013.02.010http://doi.org/10.1016/j.nuclphysb.2013.02.010
G. Aad et al. [ATLAS], Measurement of D*±, D± and Ds± meson production cross sections in pp collisions at TeV with the ATLAS detector. Nucl. Phys. B 907, 717-763 (2016). doi: 10.1016/j.nuclphysb.2016.04.032http://doi.org/10.1016/j.nuclphysb.2016.04.032
B. Abelev et al. [ALICE], Measurement of charm production at central rapidity in proton-proton collisions at TeV. JHEP 07, 191 (2012). doi: 10.1007/JHEP07(2012)191http://doi.org/10.1007/JHEP07(2012)191
S. Acharya et al. [ALICE], Measurement of D-meson production at mid-rapidity in pp collisions at TeV. Eur. Phys. J. C 77, no.8, 550 (2017). doi: 10.1140/epjc/s10052-017-5090-4http://doi.org/10.1140/epjc/s10052-017-5090-4
J. Adam et al. [STAR], Centrality and transverse momentum dependence of D0-meson production at mid-rapidity in Au+Au collisions at . Phys. Rev. C 99, no.3, 034908 (2019). doi: 10.1103/PhysRevC.99.034908http://doi.org/10.1103/PhysRevC.99.034908
G. Xie [STAR], Measurements of open charm hadron production in Au+Au Collisions at = 200 GeV at STAR. PoS HardProbes2018, 142 (2018). doi: 10.22323/1.345.0142http://doi.org/10.22323/1.345.0142
M. He and R. Rapp, Charm-baryon production in proton-proton collisions. Phys. Lett. B 795, 117-121 (2019). doi: 10.1016/j.physletb.2019.06.004http://doi.org/10.1016/j.physletb.2019.06.004
J. Adam et al. [STAR], First measurement of Λc baryon production in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 124, no.17, 172301 (2020). doi: 10.1103/PhysRevLett.124.172301http://doi.org/10.1103/PhysRevLett.124.172301
Z. W. Lin and C. M. Ko, A Model for J/psi absorption in hadronic matter. Phys. Rev. C 62, 034903 (2000). doi: 10.1103/PhysRevC.62.034903http://doi.org/10.1103/PhysRevC.62.034903
Z. W. Lin, C. M. Ko and B. Zhang, Hadronic scattering of charm mesons. Phys. Rev. C 61, 024904 (2000). doi: 10.1103/PhysRevC.61.024904http://doi.org/10.1103/PhysRevC.61.024904
Z. W. Lin, T. G. Di and C. M. Ko, Charm meson scattering cross-sections by pion and rho meson. Nucl. Phys. A 689, 965-979 (2001). doi: 10.1016/S0375-9474(00)00611-4http://doi.org/10.1016/S0375-9474(00)00611-4
A. Sibirtsev, K. Tsushima and A. W. Thomas, Charmonium absorption by nucleons. Phys. Rev. C 63, 044906 (2001). doi: 10.1103/PhysRevC.63.044906http://doi.org/10.1103/PhysRevC.63.044906
C. Bierlich, T. Sjöstrand and M. Utheim, Hadronic rescattering in pA and AA collisions. Eur. Phys. J. A 57, no.7, 227 (2021). doi: 10.1140/epja/s10050-021-00543-3http://doi.org/10.1140/epja/s10050-021-00543-3
B. Andersson and P. A. Henning, On the dynamics of a color rope: The Fragmentation of interacting strings and the longitudinal distributions. Nucl. Phys. B 355, 82-105 (1991). doi: 10.1016/0550-3213(91)90303-Fhttp://doi.org/10.1016/0550-3213(91)90303-F
C. Bierlich and J. R. Christiansen, Effects of color reconnection on hadron flavor observables. Phys. Rev. D 92, no.9, 094010 (2015). doi: 10.1103/PhysRevD.92.094010http://doi.org/10.1103/PhysRevD.92.094010
C. Bierlich, G. Gustafson, L. Lönnblad and A. Tarasov, Effects of overlapping strings in pp collisions. JHEP 03, 148 (2015). doi: 10.1007/JHEP03(2015)148http://doi.org/10.1007/JHEP03(2015)148
N. Fischer and T. Sjöstrand, Thermodynamical string fragmentation. JHEP 01, 140 (2017). doi: 10.1007/JHEP01(2017)140http://doi.org/10.1007/JHEP01(2017)140
C. Bierlich, Rope hadronization and strange particle production. EPJ Web Conf. 171, 14003 (2018). doi: 10.1051/epjconf/201817114003http://doi.org/10.1051/epjconf/201817114003
T. S. Biro, H. B. Nielsen and J. Knoll, Color rope model for extreme relativistic heavy ion collisions. Nucl. Phys. B 245, 449-468 (1984). doi: 10.1016/0550-3213(84)90441-3http://doi.org/10.1016/0550-3213(84)90441-3
A. Tai and B. H. Sa, Increase of effective string tension and production of strange particles. Phys. Lett. B 409, 393 (1997). doi: 10.1016/S0370-2693(97)00793-4http://doi.org/10.1016/S0370-2693(97)00793-4
J. S. Moreland, J. E. Bernhard and S. A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, no.1, 011901 (2015). doi: 10.1103/PhysRevC.92.011901http://doi.org/10.1103/PhysRevC.92.011901
J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. Phys. Rev. C 94, no.2, 024907 (2016). doi: 10.1103/PhysRevC.94.024907http://doi.org/10.1103/PhysRevC.94.024907
L. Adamczyk et al. [STAR], Bulk properties of the medium produced in relativistic heavy-ion collisions from the Beam Energy Scan program. Phys. Rev. C 96, no.4, 044904 (2017). doi: 10.1103/PhysRevC.96.044904http://doi.org/10.1103/PhysRevC.96.044904
B. B. Back et al. [PHOBOS], Centrality dependence of charged hadron transverse momentum spectra in Au + Au collisions from s(NN)**(1/2) = 62.4-GeV to 200-GeV. Phys. Rev. Lett. 94, 082304 (2005). doi: 10.1103/PhysRevLett.94.082304http://doi.org/10.1103/PhysRevLett.94.082304
J. Adams et al. [STAR], Transverse momentum and collision energy dependence of high p(T) hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003). doi: 10.1103/PhysRevLett.91.172302http://doi.org/10.1103/PhysRevLett.91.172302
B. Abelev et al. [ALICE], Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV. Phys. Lett. B 720, 52-62 (2013). doi: 10.1016/j.physletb.2013.01.051http://doi.org/10.1016/j.physletb.2013.01.051
S. Acharya et al. [ALICE], Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 11, 013 (2018). doi: 10.1007/JHEP11(2018)013http://doi.org/10.1007/JHEP11(2018)013
A. Adare et al. [PHENIX], Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV. Phys. Rev. C 93, no.2, 024901 (2016). doi: 10.1103/PhysRevC.93.024901http://doi.org/10.1103/PhysRevC.93.024901
J. Adam et al. [ALICE], Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at TeV. Phys. Lett. B 772, 567-577 (2017). doi: 10.1016/j.physletb.2017.07.017http://doi.org/10.1016/j.physletb.2017.07.017
S. Acharya et al. [ALICE], Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at = 5.44 TeV. Phys. Lett. B 788, 166-179 (2019). doi: 10.1016/j.physletb.2018.10.052http://doi.org/10.1016/j.physletb.2018.10.052
S. Acharya et al. [ALICE], Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at =5.44TeV. Phys. Lett. B 790, 35-48 (2019). doi: 10.1016/j.physletb.2018.12.048http://doi.org/10.1016/j.physletb.2018.12.048
B. Alver et al. [PHOBOS], System size and centrality dependence of charged hadron transverse momentum spectra in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 62.4-GeV and 200-GeV. Phys. Rev. Lett. 96, 212301 (2006). doi: 10.1103/PhysRevLett.96.212301http://doi.org/10.1103/PhysRevLett.96.212301
J. Adam et al. [ALICE], Centrality dependence of particle production in p-Pb collisions at = 5.02 TeV. Phys. Rev. C 91, no.6, 064905 (2015). doi: 10.1103/PhysRevC.91.064905http://doi.org/10.1103/PhysRevC.91.064905
P. Möller, A. J. Sierk, T. Ichikawa and H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). Atom. Data Nucl. Data Tabl. 109-110, 1-204 (2016). doi: 10.1016/j.adt.2015.10.002http://doi.org/10.1016/j.adt.2015.10.002
T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159-177 (2015). doi: 10.1016/j.cpc.2015.01.024http://doi.org/10.1016/j.cpc.2015.01.024
C. Bierlich, G. Gustafson, L. Lönnblad and H. Shah, The Angantyr model for heavy-ion collisions in PYTHIA8. JHEP 10, 134 (2018). doi: 10.1007/JHEP10(2018)134http://doi.org/10.1007/JHEP10(2018)134
Y. Kanakubo, Y. Tachibana and T. Hirano, Unified description of hadron yield ratios from dynamical core-corona initialization. Phys. Rev. C 101, no.2, 024912 (2020). doi: 10.1103/PhysRevC.101.024912http://doi.org/10.1103/PhysRevC.101.024912
G. Papp, G. Gábor Barnaföldi, G. Bíró, M. Gyulassy, S. Harangozó, G. Ma, P. Lévai, X. N. Wang and B. W. Zhang, First results with HIJING++ on high-energy heavy ion collisions. arXiv:1805.02635 [hep-ph].
J. H. Putschke et al., The JETSCAPE framework. arXiv:1903.07706 [nucl-th].
L. Zheng, G. H. Zhang, Y. F. Liu, Z. W. Lin, Q. Y. Shou and Z. B. Yin, Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. arXiv:2104.05998 [hep-ph].
B. Schenke and R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions. Phys. Rev. Lett. 113, 102301 (2014). doi: 10.1103/PhysRevLett.113.102301http://doi.org/10.1103/PhysRevLett.113.102301
H. Mäntysaari and B. Schenke, Evidence of strong proton shape fluctuations from incoherent diffraction. Phys. Rev. Lett. 117, no.5, 052301 (2016). doi: 10.1103/PhysRevLett.117.052301http://doi.org/10.1103/PhysRevLett.117.052301
K. Welsh, J. Singer and U. W. Heinz, Initial state fluctuations in collisions between light and heavy ions. Phys. Rev. C 94, no.2, 024919 (2016). doi: 10.1103/PhysRevC.94.024919http://doi.org/10.1103/PhysRevC.94.024919
H. Mäntysaari, B. Schenke, C. Shen and P. Tribedy, Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 772, 681-686 (2017). doi: 10.1016/j.physletb.2017.07.038http://doi.org/10.1016/j.physletb.2017.07.038
D. d’Enterria, G. K. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, S. V. Petrushanko, L. I. Sarycheva and A. M. Snigirev, Estimates of hadron azimuthal anisotropy from multiparton interactions in proton-proton collisions at TeV. Eur. Phys. J. C 66, 173-185 (2010). doi: 10.1140/epjc/s10052-009-1232-7http://doi.org/10.1140/epjc/s10052-009-1232-7
S. Eremin and S. Voloshin, Nucleon participants or quark participants?. Phys. Rev. C 67, 064905 (2003). doi: 10.1103/PhysRevC.67.064905http://doi.org/10.1103/PhysRevC.67.064905
L. Zheng and Z. Yin, A systematic study of the initial state in heavy ion collisions based on the quark participant assumption. Eur. Phys. J. A 52, 45 (2016). doi: 10.1140/epja/i2016-16045-xhttp://doi.org/10.1140/epja/i2016-16045-x
C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94, no.2, 024914 (2016). doi: 10.1103/PhysRevC.94.024914http://doi.org/10.1103/PhysRevC.94.024914
P. Bożek, W. Broniowski and M. Rybczyński, Wounded quarks in A+A, p+A, and p+p collisions. Phys. Rev. C 94, no.1, 014902 (2016). doi: 10.1103/PhysRevC.94.014902http://doi.org/10.1103/PhysRevC.94.014902
P. Bożek, W. Broniowski, M. Rybczynski and G. Stefanek, GLISSANDO 3: GLauber Initial-State Simulation AND mOre, ver. 3. Comput. Phys. Commun. 245, 106850 (2019). doi: 10.1016/j.cpc.2019.07.014http://doi.org/10.1016/j.cpc.2019.07.014
D. d’Enterria and C. Loizides, Progress in the Glauber model at collider energies. arXiv:2011.14909 [hep-ph].
S. Acharya et al. [ALICE], Multiplicity dependence of π , K, and p production in pp collisions at TeV. Eur. Phys. J. C 80, no.8, 693 (2020). doi: 10.1140/epjc/s10052-020-8125-1http://doi.org/10.1140/epjc/s10052-020-8125-1
J. L. Nagle, R. Belmont, K. Hill, J. Orjuela Koop, D. V. Perepelitsa, P. Yin, Z. W. Lin and D. McGlinchey, Minimal conditions for collectivity in e+e- and p+p collisions. Phys. Rev. C 97, no.2, 024909 (2018). doi: 10.1103/PhysRevC.97.024909http://doi.org/10.1103/PhysRevC.97.024909
V. Khachatryan et al. [CMS], Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193-220 (2017). doi: 10.1016/j.physletb.2016.12.009http://doi.org/10.1016/j.physletb.2016.12.009
T. Sjöstrand and M. Utheim, A framework for hadronic rescattering in pp collisions. Eur. Phys. J. C 80, no.10, 907 (2020). doi: 10.1140/epjc/s10052-020-8399-3http://doi.org/10.1140/epjc/s10052-020-8399-3
S. Ferreres-Solé and T. Sjöstrand, The space–time structure of hadronization in the Lund model. Eur. Phys. J. C 78, no.11, 983 (2018). doi: 10.1140/epjc/s10052-018-6459-8http://doi.org/10.1140/epjc/s10052-018-6459-8
A. V. da Silva, W. M. Serenone, D. Dobrigkeit Chinellato, J. Takahashi and C. Bierlich, Studies of heavy-ion collisions using PYTHIA Angantyr and UrQMD. arXiv:2002.10236 [hep-ph].
T. Kodama, S. B. Duarte, K. C. Chung, R. Donangelo and R. A. M. S. Nazareth, Causality and relativistic effects in intranuclear cascade calculations. Phys. Rev. C 29, 2146-2152 (1984). doi: 10.1103/PhysRevC.29.2146http://doi.org/10.1103/PhysRevC.29.2146
G. Kortemeyer, W. Bauer, K. Haglin, J. Murray and S. Pratt, Causality violations in cascade models of nuclear collisions. Phys. Rev. C 52, 2714-2724 (1995). doi: 10.1103/PhysRevC.52.2714http://doi.org/10.1103/PhysRevC.52.2714
B. Zhang and Y. Pang, Frame dependence of parton cascade results. Phys. Rev. C 56, 2185-2190 (1997). doi: 10.1103/PhysRevC.56.2185http://doi.org/10.1103/PhysRevC.56.2185
B. Zhang, M. Gyulassy and Y. Pang, Equation of state and collision rate tests of parton cascade models. Phys. Rev. C 58, 1175-1182 (1998). doi: 10.1103/PhysRevC.58.1175http://doi.org/10.1103/PhysRevC.58.1175
S. Cheng, S. Pratt, P. Csizmadia, Y. Nara, D. Molnar, M. Gyulassy, S. E. Vance and B. Zhang, The Effect of finite range interactions in classical transport theory. Phys. Rev. C 65, 024901 (2002). doi: 10.1103/PhysRevC.65.024901http://doi.org/10.1103/PhysRevC.65.024901
C. Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view. Phys. Rev. C 25, 1460-1475 (1982). doi: 10.1103/PhysRevC.25.1460http://doi.org/10.1103/PhysRevC.25.1460
G. Welke, R. Malfliet, C. Gregoire, M. Prakash and E. Suraud, Collisional relaxation in simulations of heavy-ion collisions using Boltzmann-type equations. Phys. Rev. C 40, 2611-2620 (1989). doi: 10.1103/PhysRevC.40.2611http://doi.org/10.1103/PhysRevC.40.2611
Y. Pang, https://karman.physics.purdue.edu/OSCAR-old/rhic/gcp/proc.htmlhttps://karman.physics.purdue.edu/OSCAR-old/rhic/gcp/proc.html; General Cascade Program, in Proceedings of RHIC’96, CU-TP-815 (1997).
D. Molnar and M. Gyulassy, New solutions to covariant nonequilibrium dynamics. Phys. Rev. C 62, 054907 (2000). doi: 10.1103/PhysRevC.62.054907http://doi.org/10.1103/PhysRevC.62.054907
D. Molnar and P. Huovinen, Dissipation and elliptic flow at RHIC. Phys. Rev. Lett. 94, 012302 (2005). doi: 10.1103/PhysRevLett.94.012302http://doi.org/10.1103/PhysRevLett.94.012302
X. L. Zhao, G. L. Ma, Y. G. Ma and Z. W. Lin, Validation and improvement of the ZPC parton cascade inside a box. Phys. Rev. C 102, no.2, 024904 (2020). doi: 10.1103/PhysRevC.102.024904http://doi.org/10.1103/PhysRevC.102.024904
T. Schäfer and D. Teaney, Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rept. Prog. Phys. 72, 126001 (2009). doi: 10.1088/0034-4885/72/12/126001http://doi.org/10.1088/0034-4885/72/12/126001
M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954).
R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).
A. Muronga, Shear viscosity coefficient from microscopic models. Phys. Rev. C 69, 044901 (2004). doi: 10.1103/PhysRevC.69.044901http://doi.org/10.1103/PhysRevC.69.044901
N. Demir and S. A. Bass, Shear-viscosity to entropy-density ratio of a relativistic hadron gas. Phys. Rev. Lett. 102, 172302 (2009). doi: 10.1103/PhysRevLett.102.172302http://doi.org/10.1103/PhysRevLett.102.172302
J., III Fuini, N. S. Demir, D. K. Srivastava and S. A. Bass, Shear viscosity in a perturbative quark-gluon-plasma. J. Phys. G 38, 015004 (2011). doi: 10.1088/0954-3899/38/1/015004http://doi.org/10.1088/0954-3899/38/1/015004
C. Wesp, A. El, F. Reining, Z. Xu, I. Bouras and C. Greiner, Calculation of shear viscosity using Green-Kubo relations within a parton cascade. Phys. Rev. C 84, 054911 (2011). doi: 10.1103/PhysRevC.84.054911http://doi.org/10.1103/PhysRevC.84.054911
S. X. Li, D. Q. Fang, Y. G. Ma and C. L. Zhou, Shear viscosity to entropy density ratio in the Boltzmann-Uehling-Uhlenbeck model. Phys. Rev. C 84, 024607 (2011). doi: 10.1103/PhysRevC.84.024607http://doi.org/10.1103/PhysRevC.84.024607
M. R. Haque, Z. W. Lin and B. Mohanty, Multiplicity, average transverse momentum and azimuthal anisotropy in U+U collisions at = 200 GeV using AMPT model. Phys. Rev. C 85, 034905 (2012). doi: 10.1103/PhysRevC.85.034905http://doi.org/10.1103/PhysRevC.85.034905
H. J. Xu, X. Wang, H. Li, J. Zhao, Z. W. Lin, C. Shen and F. Wang, Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121, no.2, 022301 (2018). doi: 10.1103/PhysRevLett.121.022301http://doi.org/10.1103/PhysRevLett.121.022301
H. j. Xu, J. Zhao, X. Wang, H. Li, Z. W. Lin, C. Shen and F. Wang, Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision. Chin. Phys. C 42, no.8, 084103 (2018). doi: 10.1088/1674-1137/42/8/084103http://doi.org/10.1088/1674-1137/42/8/084103
H. Li, H. j. Xu, J. Zhao, Z. W. Lin, H. Zhang, X. Wang, C. Shen and F. Wang, Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory. Phys. Rev. C 98, no.5, 054907 (2018). doi: 10.1103/PhysRevC.98.054907http://doi.org/10.1103/PhysRevC.98.054907
J. Xu, L. W. Chen, C. M. Ko and Z. W. Lin, Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions. Phys. Rev. C 85, 041901 (2012). doi: 10.1103/PhysRevC.85.041901http://doi.org/10.1103/PhysRevC.85.041901
J. Xu, T. Song, C. M. Ko and F. Li, Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 112, 012301 (2014). doi: 10.1103/PhysRevLett.112.012301http://doi.org/10.1103/PhysRevLett.112.012301
Z. W. Lin, Recent developments of a multi-phase transport model. Acta Phys. Polon. Supp. 7, no.1, 191-197 (2014). doi: 10.5506/APhysPolBSupp.7.191http://doi.org/10.5506/APhysPolBSupp.7.191
Z. W. Lin and G. L. Ma, unpublished.
A. H. Tang, Probe chiral magnetic effect with signed balance function. Chin. Phys. C 44, no.5, 054101 (2020). doi: 10.1088/1674-1137/44/5/054101http://doi.org/10.1088/1674-1137/44/5/054101
S. Choudhury, G. Wang, W. He, Y. Hu and H. Z. Huang, Background evaluations for the chiral magnetic effect with normalized correlators using a multiphase transport model. Eur. Phys. J. C 80, no.5, 383 (2020). doi: 10.1140/epjc/s10052-020-7928-4http://doi.org/10.1140/epjc/s10052-020-7928-4
G. C. Yong, Z. G. Xiao, Y. Gao, and Z. W. Lin, Double strangeness production as a probe of nuclear equation of state at high densities. Phys. Lett. B 820, 136521 (2021). doi: 10.1016/j.physletb.2021.136521http://doi.org/10.1016/j.physletb.2021.136521
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution