1.State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
2.Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
ephy@ustc.edu.cn
Scan for full text
Yuan Su, Xiao-Long Chen, Yong-Jie Sun, et al. Non-extensive statistical distributions of charmed meson production in Pb-Pb and pp(
Yuan Su, Xiao-Long Chen, Yong-Jie Sun, et al. Non-extensive statistical distributions of charmed meson production in Pb-Pb and pp(
The mid-rapidity transverse momentum spectra of charmed mesons in Pb-Pb and pp(,,) collisions are analyzed using the Tsallis–Pareto distribution derived from non-extensive statistics. We provide uniform descriptions of both small and large systems over a wide range of collision energies and hadron transverse momenta. By establishing the relationship between the event multiplicity and Tsallis parameters, we observe that there is a significant linear relationship between the thermal temperature and Tsallis ,q, parameter in Pb-Pb collisions at ,, = 2.76 TeV and 5.02 TeV. Further, the slope of the ,T,–(,q,-1) parameter plot is positively correlated with the hadron mass. In addition, charmed mesons have a higher thermal temperature than light hadrons at the same ,q,-1, indicating that the charm flavor requires a higher temperature to reach the same degree of non-extensivity as light flavors in heavy-ion collisions. The same fit is applied to the transverse momentum spectra of charmed mesons in pp(,,) collisions over a large energy range using the Tsallis–Pareto distribution. It is found that the thermal temperature increases with system energy, whereas the ,q, parameter becomes saturated at the pp(,,) limit,q,-1 = 0.142 ± 0.010. In addition, the results of most peripheral Pb-Pb collisions are found to approach the pp(,,) limit, which suggests that more peripheral heavy-ion collisions are less affected by the medium and more similar to pp(,,) collisions.
Charmed mesonNon-extensive statisticsTsallis–Pareto distributionQGPHeavy-ion collision
Z.W. Lin, M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51, 2177 (1995). doi: 10.1103/PhysRevC.51.2177http://doi.org/10.1103/PhysRevC.51.2177
M. Cacciari, P. Nason, R. Vogt, QCD Predictions for Charm and Bottom Quark Production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). doi: 10.1103/PhysRevLett.95.122001http://doi.org/10.1103/PhysRevLett.95.122001
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., [STAR Collaboration], Measurements of D0 Azimuthal Anisotropy at Midrapidity in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 118, 212301 (2017). doi: 10.1103/PhysRevLett.118.212301http://doi.org/10.1103/PhysRevLett.118.212301
L. Adamczyk, J.K. Adkins, G. Agakishiev et al., [STAR Collaboration], Measurements of D0 Meson Nuclear Modifications in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 113, 142301 (2014). doi: 10.1103/PhysRevLett.113.142301http://doi.org/10.1103/PhysRevLett.113.142301
J. Adams, L. Adamczyk, J.R. Adams et al., [STAR Collaboration], Centrality and transverse momentum dependence of D0-meson production at mid-rapidity in Au + Au Collisions at = 200 GeV. Phys. Rev. C 31, 81 (2020). doi: 10.1103/PhysRevC.99.034908http://doi.org/10.1103/PhysRevC.99.034908
Z.B. Tang, W.M. Zha and YF. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2019). doi: 10.1007/s41365-020-00785-8http://doi.org/10.1007/s41365-020-00785-8
C. Gale, S.Y. Jeon, B. Schenke et al., Event-by-event anisotropic flow in heavy-ion collisions from combined yang-mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013). doi: 10.1103/PhysRevLett.95.122001http://doi.org/10.1103/PhysRevLett.95.122001
H. Wang, J.H. Chen, Study on open charm hadron production and angular correlation in high-energy nuclear collisions. Nucl. Sci. Tech. 32, 2 (2021). doi: 10.1007/s41365-020-00839-xhttp://doi.org/10.1007/s41365-020-00839-x
J.W. Qiu, X.P. Wang, H.X. Xing, Exploring J/psi production mechanism at the future electron-ion collider. Chinese Phys. Lett. 38, 041201 (2021). doi: 10.1088/0256-307X/38/4/041201http://doi.org/10.1088/0256-307X/38/4/041201
L. Ma, X. Dong, H.Z. Huang et al., Study of a background reconstruction method for the measurement of D-meson azimuthal angular correlations. Nucl. Sci. Tech. 32, 61 (2021). doi: 10.1007/s41365-021-00896-whttp://doi.org/10.1007/s41365-021-00896-w
S.H. Zhang, R.R. Ma, Y.F. Zhang et al., Extraction of inclusive photon production at mid-rapidity in p + p and Au + Au collisions at = 200 GeV. Nucl. Sci. Tech. 32, 7 (2021). doi: 10.1007/s41365-020-00840-4http://doi.org/10.1007/s41365-020-00840-4
H. Wang, J.H. Chen, Y.G. Ma et al., Charm hadron azimuthal angular correlations in Au + Au collisions at = 200 GeV from parton scatterings. Nucl. Sci. Tech. 30, 185 (2019). doi: 10.1007/s41365-019-0706-zhttp://doi.org/10.1007/s41365-019-0706-z
J. Adams, M.M. Aggarwal, Z. Ahammed et al., [STAR Collaboration], Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions. Nucl. Phys. A 757, 102–183 (2005). doi: 10.1016/j.nuclphysa.2005.03.085http://doi.org/10.1016/j.nuclphysa.2005.03.085
K. Adcox, S.S. Adler, S. Afanasiev et al., [PHENIX Collaboration], Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). doi: 10.1016/j.nuclphysa.2005.03.086http://doi.org/10.1016/j.nuclphysa.2005.03.086
E. Schnedermann, J. Sollfrank and U.W. Heinz, Thermal phenomenology of hadrons from 200A GeV S+S collisions . Phys. Rev. C 48, 2462 (1993). doi: 10.1103/PhysRevC.48.2462http://doi.org/10.1103/PhysRevC.48.2462
ZB. Tang, Y.C. Xu, L.J. Ruan et al., Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051901 (2009). doi: 10.1103/PhysRevC.79.051901http://doi.org/10.1103/PhysRevC.79.051901
G. Bíró, G.G. Barnaföldi, T.S. Barnaföldi, Tsallis-thermometer: a QGP indicator for large and small collisional systems. arXiv:2003.03278[hep-ph]
A. Bazavov, T. Bhattacharya, C. DeTar et al., [HotQCD Collaboration], Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). doi: 10.1103/PhysRevD.90.094503http://doi.org/10.1103/PhysRevD.90.094503
ZH. Han,, BY. Chen,, YP. Liu,, Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density. Chinese Phys. Lett. 37, 112501 (2020). doi: 10.1088/0256-307X/37/11/112501http://doi.org/10.1088/0256-307X/37/11/112501
B. De, S. Bhattacharyya, G. Sau, and S. K. Biswas, Non-extensive thermodynamics, heavy ion collisions and particle production at RHIC energies. J. Mod. Phys. E16, 1687 (2007)
G. Wilk, Z. Włodarczyk, Power laws in elementary and heavy-ion collisions - A story of fluctuations and nonextensivity? Eur. Phys. J. A 40, 299 (2009). doi: 10.1140/epja/i2009-10803-9http://doi.org/10.1140/epja/i2009-10803-9
W. Alberico, A. Lavagno, Non-extensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C 12, 499 (2000). doi: 10.1007/s100529900220http://doi.org/10.1007/s100529900220
G. Bíró et al., Application of the non-extensive statistical approach to high energy particle collisions. AIP Conf. Proc. 1853 080001 (2017). doi: 10.1063/1.4985366http://doi.org/10.1063/1.4985366
C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys 52, 479 (1988). doi: 10.1007/BF01016429http://doi.org/10.1007/BF01016429
C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. (Springer, 2009)
Aernout C.D. van Enter, Roberto Fernández and Alan D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J Stat Phys 72, 879 (1993). doi: 10.1007/BF01048183http://doi.org/10.1007/BF01048183
G. Wilk and Z. Wlodarczyk, Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770 (2000). doi: 10.1103/PhysRevLett.84.2770http://doi.org/10.1103/PhysRevLett.84.2770
T.S. Biró, P. Ván,G.G. Barnafoldi et al., Statistical power law due to reservoir fluctuations and the universal thermostat independence principle. Entropy 16(12), 6497-6514 (2014). doi: 10.3390/e16126497http://doi.org/10.3390/e16126497
T.S. Biró,G.G. Barnafoldi, G. Biro et al., Near and far from equilibrium power-law statistics. J. Phys. Conf. Ser. 779 012081 (2017). doi: 10.1088/1742-6596/779/1/012081http://doi.org/10.1088/1742-6596/779/1/012081
G. Wilk, Z. Włodarczyk, Consequences of temperature fluctuations in observables measured in high-energy collisions. Eur. Phys. J. A 48, 161 (2012). doi: 10.1140/epja/i2012-12161-yhttp://doi.org/10.1140/epja/i2012-12161-y
A. Toia, [ALICE Collaboration], ALICE measures pA collisions: Collectivity in small systems? J. Phys. Conf. Ser. 798, 012068 (2017). doi: 10.1088/1742-6596/798/1/012068http://doi.org/10.1088/1742-6596/798/1/012068
J.F. Grosse-Oetringhaus, Emergence of Quark-Gluon Plasma Phenomena. arXiv:2001.02880[nucl-ex]
J. Adam et al., [ALICE Collaboration], Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nature Phys. 13, 535 (2017). doi: 10.1038/nphys4111http://doi.org/10.1038/nphys4111
B. Abelev et al., [ALICE Collaboration], Long-range angular correlations on the near and away side in p-Pb collisions at = 5.02 TeV. Phys. Lett. B 719, 29 (2013). doi: 10.1016/j.physletb.2013.01.012http://doi.org/10.1016/j.physletb.2013.01.012
G. Aad, T. Abajyan,B. Abbott et al., [ATLAS Collaboration], Observation of associated near-side and away-side long-range correlations in = 5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Rev. Lett. 110, 182302 (2013). doi: 10.1103/PhysRevLett.110.182302http://doi.org/10.1103/PhysRevLett.110.182302
V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. J. High Energ. Phys. 91, (2010). doi: 10.1007/JHEP09(2010)091http://doi.org/10.1007/JHEP09(2010)091
A.N. Mishra, Parton energy loss in pp collisions at very high multiplicity. arXiv:1905.06918[hep-ph]
Z. Varga. R. Vertesi, G.G. Barnafoldi, Modification of jet structure in high-multiplicity pp collisions due to multiple-parton interactions and observing a multiplicity-independent characteristic jet size. Adv. High Energy Phys. 2019, 6731362 (2019) doi: 10.1155/2019/6731362http://doi.org/10.1155/2019/6731362
A. Adare, S.S. Adler, S. Afanasiev et al., [PHENIX Collaboration], Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu Collisions from = 22.5 to 200 GeV. Phys. Rev. C 78, 044902 (2008). doi: 10.1103/PhysRevC.78.044902http://doi.org/10.1103/PhysRevC.78.044902
K. Aamodt, N. Abel, U. Abeysekara et al., [ALICE Collaboration], Charged-particle multiplicity measurement in proton-proton collisions at = 7 TeV with ALICE at LHC. Eur. Phys. J. C 68, 345 (2010). doi: 10.1140/epjc/s10052-010-1350-2http://doi.org/10.1140/epjc/s10052-010-1350-2
V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., [CMS Collaboration], Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at = 7 TeV. Phys. Rev. Lett. 105, 022002 (2010). doi: 10.1103/PhysRevLett.105.022002http://doi.org/10.1103/PhysRevLett.105.022002
G. Aad, B. Abbott, J. Abdallah et al., [ATLAS Collaboration], Charged-particle multiplicities in ppinteractions measured with the ATLAS detector at the LHC. New J. Phys. 13, 053033 (2011). doi: 10.1088/1367-2630/13/5/053033http://doi.org/10.1088/1367-2630/13/5/053033
T.S. Biro, A. Jakovac and Z. Schram, Nuclear and quark matter at high temperature. Eur. Phys. J. A 53, 52 (2017). doi: 10.1140/epja/i2017-12235-4http://doi.org/10.1140/epja/i2017-12235-4
T. S. Biró, P. Ván, G.G. Barnafoldi et al., Statistical power law due to reservoir fluctuations and the universal thermostat independence principle. Entropy 16 (12),6497-6514 (2014).
B. Abelev, A. Abrahantes Quintana, D. Adamova et al., Measurement of charm production at central rapidity in proton-proton collisions at = 7 TeV. J. High Energ. Phys. 2012, 128 (2012). doi: 10.1007/JHEP01(2012)128http://doi.org/10.1007/JHEP01(2012)128
D. Acosta et al., [CDF II Collaboration], Measurement of Prompt Charm Meson Production Cross Sections in p Collisions at = 1.96 TeV. Phys. Rev. Lett. 91, 241804 (2003). doi: 10.1103/PhysRevLett.91.241804http://doi.org/10.1103/PhysRevLett.91.241804
L. Adamczyk et al., [STAR Collaboration], Measurements of D0 and D* production in p+p collisions at = 200 GeV. Phys. Rev. D 86, 072013 (2012). doi: 10.1103/PhysRevD.86.072013http://doi.org/10.1103/PhysRevD.86.072013
D. Tlusty, Open charm measurements in p + p collisions at STAR. J. Physics Conference Series 509(1):012078 (2014). doi: 10.1088/1742-6596/509/1/012078http://doi.org/10.1088/1742-6596/509/1/012078.
J. Adam et al., [ALICE Collaboration], Transverse momentum dependence of D-meson production in Pb-Pb collisions at = 2.76 TeV. J. High Energ. Phys. 2016 81 (2016). doi: 10.1007/JHEP03(2016)081http://doi.org/10.1007/JHEP03(2016)081
S. Acharya, F.T. Acosta, D. Adamova et al., [ALICE Collaboration], Measurement of D0, D+, D*+ and Ds+ production in Pb-Pb collisions at = 5.02 TeV. J. High Energ. Phys. 2018, 174 (2018). doi: 10.1007/JHEP10(2018)174http://doi.org/10.1007/JHEP10(2018)174
S. Acharya, D. Adamova, S.P. Adhya et al., [ALICE Collaboration], Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at = 5.02 TeV. Phys. Rev. C 101, 044907 (2020). doi: 10.1103/PhysRevC.101.044907http://doi.org/10.1103/PhysRevC.101.044907
B. Abelev, J. Adam, D. Adamova et al., [ALICE Collaboration], Centrality dependence of π, K, and p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 88, 044910 (2013). doi: 10.1103/PhysRevC.88.044910http://doi.org/10.1103/PhysRevC.88.044910
T. Csörgő, B. Lörstad, J. Zimányi, Quantum statistical correlations for slowly expanding systems. Phys. Lett. B 338, 134 (1994). doi: 10.1016/0370-2693(94)91356-0http://doi.org/10.1016/0370-2693(94)91356-0
J. Helgesson, T. Csörgő, M. Asakawa, B. Lörstad, Quantum statistical correlations and single-particle distributions for slowly expanding systems with temperature profile. Phys. Rev. C 56, 2626 (1997). doi: 10.1103/PhysRevC.56.2626http://doi.org/10.1103/PhysRevC.56.2626
M. Waqas, F.H. Liu, L.L. Li et al., Effective (kinetic freeze-out) temperature, transverse flow velocity, and kinetic freeze-out volume in high energy collisions. Nucl. Sci. Tech. 31, 109 (2020). doi: 10.1007/s41365-020-00821-7http://doi.org/10.1007/s41365-020-00821-7
G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71, 064904 (2005). doi: 10.1103/PhysRevC.71.064904http://doi.org/10.1103/PhysRevC.71.064904
T. Csörgő, S.V. Akkelin, Y. Hama, B. Lukács and Y.M. Sinyukov, Observables and initial conditions for self-similar ellipsoidal flows. Phys. Rev. C 67, 034904 (2003). doi: 10.1103/PhysRevC.67.034904http://doi.org/10.1103/PhysRevC.67.034904
A. Adare et al., [PHENIX Collaboration], Identified charged hadron production in p+p collisions at = 200 and 62.4 GeV. Phys. Rev. C 83, 064903 (2011). doi: 10.1103/PhysRevC.83.064903http://doi.org/10.1103/PhysRevC.83.064903
H.R. Wei, F.H. Liu and R.A. Lacey, Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A 52, 102 (2016). doi: 10.1140/epja/i2016-16102-6http://doi.org/10.1140/epja/i2016-16102-6
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution