1.Chengdu University of Technology, Chengdu 610059, China
2.Nuclear Power Institute of China, Chengdu 610005, China
dongchunhui@cdut.edu.cn
Scan for full text
Rui-Yang Xu, Chun-Hui Dong, Xiao-Qing Mao, et al. Simulation results of the online tritiated water measurement system. [J]. Nuclear Science and Techniques 32(11):126(2021)
Rui-Yang Xu, Chun-Hui Dong, Xiao-Qing Mao, et al. Simulation results of the online tritiated water measurement system. [J]. Nuclear Science and Techniques 32(11):126(2021) DOI: 10.1007/s41365-021-00964-1.
Currently, the liquid scintillation method is widely used to measure the activity of tritiated water in the primary circuit of nuclear power plants, which leads to the continuous production of radioactive waste during measurement. In addition, the real-time activity information of tritiated water cannot be obtained. To solve this problem, herein we present an online tritiated water measurement method based on plastic scintillators, that used the optical transport process in the Geant 4 software toolkit to build a model of plastic scintillation detection for tritiated water. Through simulation, the basic geometric dimensions of the detector were determined. In this dimension, using one detector to measure for 3 h, when the tritiated water activity was 100 Bq/L, its resolution was 16% (16 Bq/L). In addition, calculations were performed for the presence of other background signals to obtain the minimum detectable concentration.
Tritiated waterGeant 4Plastic scintillatorsMeasurement system
Li D. P., Pan Z. Q., Radiation Protection Handbook, 1st edn. (Atomic Energy Press, Beijing, 1990), pp. 118-120 (in Chinese)
Ding H. B., Wang N. Y., Neutron Source Physics, 1st edn. (Science Press, Beijing, 1984), pp. 543-544 (in Chinese)
Sun P.Y., Shi J.J., Li M.Y. et al., Accumulation, transference and dynamical disappearance of HTO in simulated marine ecosystem. Acta Scien. Circum.609-613 (2002) (in Chinese). doi: 10.3321/j.issn:0253-2468.2002.05.013http://doi.org/10.3321/j.issn:0253-2468.2002.05.013
Zhu L., Radiochemistry, 1st edn. (Atomic Energy Press, Beijing,1985), pp. 315 (in Chinese)
Yang H. Y., Tritium Safety and Protection,1st edn. (Atomic Energy Press, Beijing, 1997), pp. 37(in Chinese)
Hofstetter K. J., Wilson H. T., Aqueous effluent tritium monitor development. Fusion Technol. 21, 446-451 (1992). doi: 10.13182/FST92-A29786http://doi.org/10.13182/FST92-A29786
URL. Council directive 2013/51/euratom.
Liu F., Li Y.H., Lin J., A hydrogen and oxygen isotope study of groundwater in the yongding river drainage of beijing and its environmental significance. Acta Geoscientica Sinica 161-166(02) (2008) (in Chinese). doi: 10.3975/cagsb.2008.02.05http://doi.org/10.3975/cagsb.2008.02.05
Chai Y.S., Wei L.W., Kong X.G., Optimization of sample tritium measurement conditions in nuclear power plant primary circuit. Industrial & Science Tribune. 19(20), 40-41(2020) (in Chinese)
Matsuyama M., Torikai Y., Watanabe K., In-situ measurement of high level tritiated water by bremsstrahlung counting. Fusion Sci. Technol. 48(1), 324-331 (2005). doi: 10.13182/FST48-324http://doi.org/10.13182/FST48-324
Matsuyama M., Hara M., Standardization of tritium measuring devices based on a high-sensitivity calorimeter. Fusion Sci. Technol. 54(1), 182-185 (2008). doi: 10.13182/FST08-A1791http://doi.org/10.13182/FST08-A1791
Matsuyama M., Takatsuka K., Hara M., Sensitivity of a specially designed calorimeter for absolute evaluation of tritium concentration in water. Fusion Eng. Des. 85(10), 2045-2048 (2010). doi: 10.1016/j.fusengdes.2010.07.025http://doi.org/10.1016/j.fusengdes.2010.07.025
Hatano Y., Hara M., Ohuchi H. et al., Measurement of highly tritiated water by imaging plate. Fusion Sci. Technol. 60(3), 982-985 (2011). doi: 10.13182/FST11-A12580http://doi.org/10.13182/FST11-A12580
Jakonić I., Todorović N., Nikolov J. et al., Optimization of low-level LS counter Quantulus 1220 for tritium determination in water samples. Radiat. Phys. Chem. 98, 69-76 (2014). doi: 10.1016/j.radphyschem.2014.01.012http://doi.org/10.1016/j.radphyschem.2014.01.012
Varlam C., Stefanescu I., Duliu O. G. et al., Applying direct liquid scintillation counting to low level tritium measurement. Appl. Radiat. Isotopes 67(5), 812-816 (2009). doi: 10.1016/j.apradiso.2009.01.023http://doi.org/10.1016/j.apradiso.2009.01.023
Verrezen F., Loots H., Hurtgen C., A performance comparison of nine selected liquid scintillation cocktails. Appl. Radiat. Isotopes 66(6), 1038-1042 (2008). doi: 10.1016/j.apradiso.2008.02.050http://doi.org/10.1016/j.apradiso.2008.02.050
Chen Z.L., Xing S.X., Wang H.Y. et al., The effect of vial type and cocktail quantity on tritium measurement in LSC. Appl. Radiat. Isotopes 68(9), 1855-1858 (2010). doi: 10.1016/j.apradiso.2010.04.015http://doi.org/10.1016/j.apradiso.2010.04.015
Azevedo C.D.R., Baeza A., Chauveau E. et al., Simulation results of a real-time in water tritium monitor. Nucl. Instrum. Meth. B 982, 164555 (2020). doi: 10.1016/j.nima.2020.164555http://doi.org/10.1016/j.nima.2020.164555
Agostinelli S., Allison J., Amako K. et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506(3), 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
Mertens S., Lasserre T., Groh S. et al., Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos. J. Cosmol. Astropart. P. 2015(2), 020 (2015). doi: 10.1088/1475-7516/2015/02/020http://doi.org/10.1088/1475-7516/2015/02/020
Dietz-Laursonn E.. Peculiarities in the Simulation of Optical Physics with Geant4. arXiv:1612.05162
Argyriades J., Arnold R., Augier C. et al., Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors. Nucl. Instrum. Meth. A 625(1), 20-28 (2011). doi: 10.1016/j.nima.2010.09.027http://doi.org/10.1016/j.nima.2010.09.027
Qian X.L., Sun H. Y., Liu C. et al., Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment, Nucl. Sci. Tech. 32(5), 51 (2021) doi: 10.1007/s41365-021-00882-2http://doi.org/10.1007/s41365-021-00882-2
Zuo Z., Liu H. R, Yan Y. C., et al. Adaptability of n–γ discrimination and filtering methods based on plastic scintillation. Nucl. Sci. Tech. 32(3), 28 (2021) doi: 10.1007/s41365-021-00865-3http://doi.org/10.1007/s41365-021-00865-3
Thakur V. M., Jain A., Ashokkumar P. et al. Design and development of a plastic scintillator based whole body β/γ contamination monitoring system. Nucl. Sci. Tech. 32(5), 47 (2021) doi: 10.1007/s41365-021-00883-1http://doi.org/10.1007/s41365-021-00883-1
Guan X., Ge L. Q., Zeng G. Q. et al. Determination of gross α and β activities in Zouma River based on online HPGe gamma measurement system. Nucl. Sci. Tech. 31(12), 120 (2020) doi: 10.1007/s41365-020-00828-0http://doi.org/10.1007/s41365-020-00828-0
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution