1.Chengdu University of Technology, The College of Nuclear Technology and Automation Engineering, ChengDu 610059, China
*shinecore@163.com
Scan for full text
Xiao-Zhe Li, Qing-Xian Zhang, He-Yi Tan, et al. Fast nuclide identification based on a sequential bayesian method. [J]. Nuclear Science and Techniques 32(12):143(2021)
Xiao-Zhe Li, Qing-Xian Zhang, He-Yi Tan, et al. Fast nuclide identification based on a sequential bayesian method. [J]. Nuclear Science and Techniques 32(12):143(2021) DOI: 10.1007/s41365-021-00982-z.
The rapid identification of radioactive substances in public areas is crucial. However, traditional nuclide identification methods only consider information regarding the full energy peaks of the gamma-ray spectrum and require long recording times, which lead to long response times. In this paper, a novel identification method using the event mode sequence (EMS) information of target radionuclides is proposed. The EMS of a target radionuclide and natural background radiation were established as two different probabilistic models and a decision function based on Bayesian inference and sequential testing was constructed. The proposed detection scheme individually processes each photon. When a photon is detected and accepted, the corresponding posterior probability distribution parameters are estimated using Bayesian inference and the decision function is updated. Then, value of the decision function is compared to preset detection thresholds to obtain a detection result. Experiments on different target radionuclides (,137,Cs and ,60,Co) were performed. The count rates of the regions of interest (ROI) in the backgrounds between [651, 671], [1154, 1186], and [1310, 1350] keV were 5.05, 3.83, and 3.61 CPS, respectively. The experimental results demonstrate that the proposed method can identify ,137,Cs in 3.8 s with a full energy peak count rate of 5.05 s,−1, and can identify ,60,Co in 4.1 s with a full energy peak count rate of 7.44 s,−1,. The results demonstrate that the proposed method can detect radioactive substances with low activity.
Natural radiationNuclide identificationSequential testingNuclear safety
G. F. Knoll, Radiation Detection and Measurement, 3rd ed. Hoboken, NJ: Wiley, 2000.
G. Gilmore and J. Hemingway, Practical Gamma-Ray Spectrometry. Hoboken, NJ: Wiley, 2003.
M.A. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis. Nucl. Instrum. Methods 50, 309-320 (1967). doi: 10.1016/0029-554X(67)90058-4http://doi.org/10.1016/0029-554X(67)90058-4
J.M. Zhang, Methods and experiments for weak nuclear signal detection and nuclide identification. Doctoral dissertation, University of Science and Technology of China (In Chinese)
R. Shi, X.G. Tuo, H.L. Li et al., Unfolding analysis of LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. Nucl. Sci. Tech. 29, 1 (2018). doi: 10.1007/s41365-017-0340-6http://doi.org/10.1007/s41365-017-0340-6
Y.L. Song, F.Q. Zhou, Y. Li et al., Methods for obtaining characteristic γ-ray net peak count from interlaced overlap peak in HPGe γ-ray spectrometer system. Nucl. Sci. Tech. 30, 11 (2019). doi: 10.1007/s41365-018-0525-7http://doi.org/10.1007/s41365-018-0525-7
C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectral. IEEE Nuclear Science Symposium Conference Record Nuclear Science 2004, 281-286 (2004). doi: 10.1109/NSSMIC.2004.1462198http://doi.org/10.1109/NSSMIC.2004.1462198
C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectral. IEEE T. Nucl. Sci. 5(33): 2916 (2006). doi: 10.1109/TNS.2006.881909http://doi.org/10.1109/TNS.2006.881909
M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks. IEEE T. Nucl. Sci. 64, 1858-1864 (2017).doi: 10.1109/TNS.2017.2693152http://doi.org/10.1109/TNS.2017.2693152
J.-P. He, X.-B. Tang, P. Gong et al., Spectrometry analysis based on approximation coefficients and deep belief networks. Nucl. Sci. Tech. 29, 69 (2018). doi: 10.1007/s41365-018-0402-4http://doi.org/10.1007/s41365-018-0402-4
J. He, X. Tang, P. Gong et al., Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network. Ann. Nucl. Energy 112, 1-8 (2018). doi: 10.1016/j.anucene.2017.09.032http://doi.org/10.1016/j.anucene.2017.09.032
L. Chen, Y. Wei, Nuclear identification algorithm based on K-L transform and neural networks. Nucl. Instrum. Meth. Physics Research Sect. A 598(2): 450-453 (2009). doi: 10.1016/j.nima.2008.09.035http://doi.org/10.1016/j.nima.2008.09.035.
C. Bobin, O. Bichler, V. Lourenço et al., Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network. Appl. Radiat. Isot. 109, 405-409 (2016). doi: 10.1016/j.apradiso.2015.12.029http://doi.org/10.1016/j.apradiso.2015.12.029
E.G. Androulakaki, M. Kokkoris, C. Tsabaris et al., In situγ-ray spectrometry in the marine environment using full spectrum analysis for natural radionuclides. Appl. Radiat. Isot. 114, 76-86 (2016). doi: 10.1016/j.apradiso.2016.05.008http://doi.org/10.1016/j.apradiso.2016.05.008
C. Tsabaris, E.G. Androulakaki, S. Alexakis et al., An in-situ gamma-ray spectrometer for the deep ocean. Appl. Radiat. Isot. 142, 120-127 (2018). doi: 10.1016/j.apradiso.2018.08.024http://doi.org/10.1016/j.apradiso.2018.08.024.
D.K. Fagan, S.M. Robinson, R.C. Runkle, Statistical methods applied to gamma-ray spectroscopy algorithms in nuclear security missions. Appl. Radiat. Isot. 70, 2428-2439 (2012). doi: 10.1016/j.apradiso.2012.06.016http://doi.org/10.1016/j.apradiso.2012.06.016.
C.J. Sullivan, J. Stinnett, Validation of a Bayesian-based isotope identification algorithm. Nucl. Instrum. Meth. Phys. Res. Sect. A 784, 298-305 (2015). doi: 10.1016/j.nima.2014.11.113http://doi.org/10.1016/j.nima.2014.11.113.
Y.G. Huo, H.Z. An, Y.L. Wu et al., Fast radioactive nuclide recognition method study based on pattern recognition. Nucl. Electron. Detection Technol. 51, 53 (2014). doi: 10.1.1.637.5584http://doi.org/10.1.1.637.5584.
C.J. Wang, D.M. Bao, C. Song et al., Investigation on the fuzzy recognition mechanism for γ-ray fingerprints of nuclear materials. Acta Physica Sinica 57(9), 5361-5365 (2008). doi: 10.7498/aps.57.5361http://doi.org/10.7498/aps.57.5361
E. Rohée, R. Coulon, F. Carrel et al., Benchmark of the non-parametric Bayesian deconvolution method implemented in the SINBAD code for X/γ rays spectra processing. Nucl. Instrum. Meth. Physics Research Sect. A 836, 91-97 (2016). doi: 10.1016/j.nima.2016.08.025http://doi.org/10.1016/j.nima.2016.08.025
E. Barat, T. Dautremer, T. Montagu et al., Nonparametric Bayesian inference in nuclear spectrometry. 2007 IEEE Nuclear Science Symposium Conference Record., 2007, pp. 880-887. doi: 10.1109/NSSMIC.2007.4436469http://doi.org/10.1109/NSSMIC.2007.4436469.
Y.M. Wang, Y.Z. Wei, Fuzzy logic based nuclide identification for γ ray spectra. Journal of Tsinghua University (NATURAL SCIENCE EDITION) 52, 1736-1740 (2012). (in Chinese)
A. Wald, Sequential Analysis. New York: Wiley, 1947, (Reprint Dover Publications, 1973). doi: 10.1038/2121008b0http://doi.org/10.1038/2121008b0.
J. V. Candy, E. Breitfeller, B.L. Guidry et al., Physics-based detection of radioactive contraband: a sequential bayesian approach. IEEE T. Nucl. Sci. 56, 3694-3711 (2009). doi: 10.1109/TNS.2009.2034374http://doi.org/10.1109/TNS.2009.2034374
Y. Chao, L.Q. Xu, L.Q. Hu et al., Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST. Chinese Physics B 29, 095201 (2020). doi: 10.1088/1674-1056/aba2e4http://doi.org/10.1088/1674-1056/aba2e4
Z.H. Qian, Z.H. Ding, M.Z. Ai et al., Bayesian Optimization for wavefront sensing and error correction. Chinese Physics Letters 38, 064202 (2021). doi: 10.1088/0256-307X/38/6/064202http://doi.org/10.1088/0256-307X/38/6/064202
Q.P. Xiang, D.F. Tian, J.Y. Zhu et al., Numerical study on the sequential Bayesian approach for radioactive materials detection. Nucl. Instrum. Meth. Phys. Research Sect. A 697, 107-113 (2013). doi: 10.1016/j.nima.2012.09.031http://doi.org/10.1016/j.nima.2012.09.031.
J. V. Candy, Model-based signal processing. J. Acoustical Society of America 119(5), 2553 (2006). doi: 10.1121/1.2184129http://doi.org/10.1121/1.2184129
J. V. Candy, Bayesian Signal Processing: Classical, Modern and Particle Filtering Method. Wiley, 2009. ISBN:0470180943, 9780470180945.
Q.P. Xiang, D.F. Tian, F.H. Hao et al., Off-line experiments on radionuclide detection based on the sequential Bayesian approach. Nucl. Instrum. Meth. Physics Research Sect. A 729, 212-219 (2013). doi: 10.1016/j.nima.2013.07.046http://doi.org/10.1016/j.nima.2013.07.046.
C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc. 2006 ISBN:0387310738.
J. Ling, G.J. Liu, J.L. Li et al., Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model. Nucl. Sci. Tech. 31, 75 (2020). doi: 10.1007/s41365-020-00792-9http://doi.org/10.1007/s41365-020-00792-9
H. Torkey, A.S. Saber, M.K. Shaat et al., Bayesian belief-based model for reliability improvement of the digital reactor protection system. Nucl. Sci. Tech. 31, 101 (2020). doi: 10.1007/s41365-020-00814-6http://doi.org/10.1007/s41365-020-00814-6
Q.X. Zhang, J.K. Zhao, Y. Gu et al., Evaluation of terrestrial radiation in the Chengdu Plain using 1/250,000-scale geochemical prospecting data. Nucl. Sci. Tech. 28, 150 (2017). doi: 10.1007/s41365-017-0293-9http://doi.org/10.1007/s41365-017-0293-9
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution