1.School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
2.Hunan Provincial Key Laboratory of Emergency Safety Technology and Equipment for Nuclear Facilities, Hengyang 421001, China
3.Shanghai Nuclear Engineering Research & Design Institute Co.LTD, Shanghai 200000, China
4.Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
zhaofang_usc@126.com
zousl2013@126.com;
xusl@usc.edu.cn;
Scan for full text
Fang Zhao, Shu-Liang Zou, Shou-Long Xu, et al. A novel approach for radionuclide diffusion in the enclosed environment of a marine nuclear reactor during a severe accident. [J]. Nuclear Science and Techniques 33(2):19(2022)
Fang Zhao, Shu-Liang Zou, Shou-Long Xu, et al. A novel approach for radionuclide diffusion in the enclosed environment of a marine nuclear reactor during a severe accident. [J]. Nuclear Science and Techniques 33(2):19(2022) DOI: 10.1007/s41365-022-01007-z.
A severe accident in a marine nuclear reactor leads to radionuclide leakage, which causes hidden dangers to workers and has adverse effects of environmental pollution. It is necessary to propose a novel approach to radionuclide diffusion in a confined environment after a severe accident in a marine nuclear reactor. Therefore, this study proposes a new method for the severe accident analysis program MELCOR coupled with computational fluid dynamics scSTREAM to study radioactive diffusion in severe accidents. The radionuclide release fraction and temperature calculated by MELCOR were combined with the scSTREAM calculations to study the radionuclide diffusion behavior and the phenomenon of radionuclide diffusion in different space environments of the reactor under the conditions of varying wind velocities of the ventilation system and diffusion speed. The results show that the wind velocity of the ventilation system is very small or zero, and the turbulent diffusion of radionuclides is not obvious and diffuses slowly in the form of condensation sedimentation and gravity settlement. When the wind speed of the ventilation system increases, the flow of radionuclides meets the wall and forms eddy currents, affecting the time variation of radionuclides diffusing into chamber 2. The wind velocity of the ventilation system and the diffusion speed have opposite effects on the time variation trend of radionuclide diffusion into the four chambers.
Radionuclide diffusionMELCOR coupled with scSTREAMSevere accidentMarine nuclear reactor
Z.A. Yang, L.B. Zhou, J.A. Zhou et al., Simulation research on passive safety injection system of marine nuclear power plant based on compressed gas. Ann. Nucl. Energy 145, 107552 (2020). doi: 10.1016/j.anucene.2020.107552http://doi.org/10.1016/j.anucene.2020.107552
S. Yang, D.A. Rui, A. Hw, A novel approach for occupational health and safety and environment risk assessment for nuclear power plant construction project. J. Clean. Prod. 258, 120945 (2020). doi: 10.1016/j.jclepro.2020.120945http://doi.org/10.1016/j.jclepro.2020.120945
A. Leelossy, F. Molnár, F. Izsák, Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosci. 6, 257-278 (2014). doi: 10.2478/s13533-012-0188-6http://doi.org/10.2478/s13533-012-0188-6
S.M. Du, A heuristic Lagrangian stochastic particle model of relative diffusion: model formulation and preliminary results. Atmos. Environ. 35, 1597-1607 (2001). doi: 10.1016/S1352-2310(00)00451-9http://doi.org/10.1016/S1352-2310(00)00451-9
T.H. Woo, Atmospheric modeling of radioactive material dispersion and health risk in Fukushima Daiichi nuclear power plants accident. Ann. Nucl. Energy 53, 197-201 (2013). doi: 10.1016/j.anucene.2012.09.003http://doi.org/10.1016/j.anucene.2012.09.003
S.U. Park, A. Choe, M.S. Park, Atmospheric dispersion and deposition of radionuclides (137Cs and 131I) released from the Fukushima Dai-ichi nuclear power plant. Comput. Water Energy Environ. Eng. 2(2B), 61-68 (2013). doi: 10.4236/cweee.2013.22B011http://doi.org/10.4236/cweee.2013.22B011
L. Chen, C. Chen, X. Zheng et al., Simulation of radionuclide diffusion in a dry storage of spent fuel under accident condition. Prog. Nucl. Energy 108(9), 152-159 (2018). doi: 10.1016/j.pnucene.2018.04.016http://doi.org/10.1016/j.pnucene.2018.04.016
M.M. Rahman, D. Ji, N. Jahan et al., Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: A review. Prog. Nucl. Energy 124, 103320 (2020). doi: 10.1016/j.pnucene.2020.103320http://doi.org/10.1016/j.pnucene.2020.103320
Y.H. Koo, Y.S. Yang, K.W. Song, Radioactivity release from the Fukushima accident and its consequences: A review. Prog. Nucl. Energy 74(3), 61-70 (2014). doi: 10.1016/j.pnucene.2014.02.013http://doi.org/10.1016/j.pnucene.2014.02.013
G.L. Petit, G. Douysset, G. Ducros et al., Analysis of radionuclide releases from the Fukushima Dai-Ichi nuclear power plant accident part I. Pure Appl. Geophysics 171(3-5), 629-644 (2012). doi: 10.1007/s00024-012-0581-6http://doi.org/10.1007/s00024-012-0581-6
A. Pascal, M. Marguerite, G.L. Petit et al., Analysis of radionuclide releases from the Fukushima Dai-ichi nuclear power plant accident Part II. Pure Appl. Geophysics 171(3-5):645-667 (2014). doi: 10.1007/s00024-012-0578-1http://doi.org/10.1007/s00024-012-0578-1
K. Akahane, S. Yonai, S. Fukuda et al., The Fukushima nuclear power plant accident and exposures in the environment. Environmentalist 32(2),136-143 (2012). doi: 10.1007/s10669-011-9381-2http://doi.org/10.1007/s10669-011-9381-2
P. von der Hardt, A. Tattegrain, The phebus fission product project. J. Nucl. Mater. 188, 115-130 (1992). doi: 10.1016/0022-3115(92)90461-Shttp://doi.org/10.1016/0022-3115(92)90461-S
A. Kontautas, E. Urbonavicius, Analysis of aerosol deposition in PHEBUS containment during FPT-1 experiment. Nucl. Eng. Des. 239(7), 1267-1274 (2009). doi: 10.1016/j.nucengdes.2009.03.012http://doi.org/10.1016/j.nucengdes.2009.03.012
T. Haste, F. Payot, C. Manenc et al., Phébus FPT3: Overview of main results concerning the behaviour of fission products and structural materials in the containment. Nucl. Eng. Des. 261, 333-345 (2013). doi: 10.1016/j.nucengdes.2012.09.034http://doi.org/10.1016/j.nucengdes.2012.09.034
N. Girault, S. Dickinson, F. Funke et al., Iodine behaviour under LWR accident conditions: Lessons learnt from analyses of the first two Phebus FP tests. Nucl. Eng. Des. 236(12), 1293-1308 (2006). doi: 10.1016/j.nucengdes.2005.12.002http://doi.org/10.1016/j.nucengdes.2005.12.002
T. Haste, F. Payot, P. Bottomley, Transport and deposition in the Phébus FP circuit. Ann. Nucl. Energy 61(11), 102-121(2013). doi: 10.1016/j.anucene.2012.10.032http://doi.org/10.1016/j.anucene.2012.10.032
Z.Y. Zhao, F. Zhang, X.W. Zhao, et al. Source term analysis in severe accident induced by large break loss of coolant accident coincident with ship blackout for ship reactor. Atom Energ. Sci. Tech, 47(09):1565-1571 (2013). doi: 10.7538/yzk.2013.47.09.1565http://doi.org/10.7538/yzk.2013.47.09.1565 (in Chinese)
F. Zhao, S.L. Zou, Z.J. Liu et al., Study on release and migration of radionuclides under the small break loss of coolant accident in a Marine reactor. Advanced Technologies for Nuclear Emergency Response 2021, 6635950 (2021). doi: 10.1155/2021/6635950http://doi.org/10.1155/2021/6635950
W. Wang, L. Chen, F. Zhan, et al. Source term analysis on blackout accident of marine reactor. Atom Energ. Sci. Tech. 48(6), 1038-1043 (2014). doi: 10.7538/yzk.2014.48.06.1038http://doi.org/10.7538/yzk.2014.48.06.1038 (in Chinese)
F. Zhang, H. Chen, Z.Y. Zhao et al., Accident process and consequence research for LOCA combining with blackout accident of ship reactor. Atom Energ. Sci. Tech. 49(01), 115-120 (2015). doi: 10.7538/yzk.2015.49.01.0115http://doi.org/10.7538/yzk.2015.49.01.0115
F. Zhan, F. Zhan, W. Wang et al., Analysis of accidentdue to interruption of power supply and safety valve failure. Journal of Naval University of Engineering 26(6), 37-41 (2014). doi: 10.7495/j.issn.1009-3486.2014.06.008http://doi.org/10.7495/j.issn.1009-3486.2014.06.008 (in Chinese)
W. Wang, L.S. Chen, F. Zhan et al., Radioactiveanalysis on accident of SG-tube rupture coupled with wholeship blackout. Atom Energ. Sci. Tech. 49(5),871-876 (2015). doi: 10.7538/yzk.2015.49.05.0871http://doi.org/10.7538/yzk.2015.49.05.0871 (in Chinese)
F. Hussain, M. Jaskulski, M. Piatkowski et al., CFD simulation of agglomeration and coalescence in spray dryer. Chem. Eng. Sci. 247, 117064 (2021). doi: 10.1016/j.ces.2021.117064http://doi.org/10.1016/j.ces.2021.117064
R.L. Gibson, M.J.H. Simmons, E. Hugh Stitt et al., Non-kinetic phenomena in thermal analysis data; Computational fluid dynamics reactor studies. Chem. Eng. J. 426, 130774 (2021).doi: 10.1016/j.cej.2021.130774http://doi.org/10.1016/j.cej.2021.130774
P. Rohdin, B. Moshfegh, Numerical modelling of industrial indoor environments: A comparison between different turbulence models and supply systems supported by field measurements. Build Environ. 46(11), 2365-2374 (2011). doi: 10.1016/j.buildenv.2011.05.019http://doi.org/10.1016/j.buildenv.2011.05.019
Q. Chen, Prediction of chamber air motion by Reynolds-stress models. Build Environ. 31(3), 233-244 (1996). doi: 10.1016/0360-1323(95)00049-6http://doi.org/10.1016/0360-1323(95)00049-6
X.F. Lyu, S. Liu, K. Ji et al., Research on hydrogen risk and hydrogen control system in marine nuclear reactor. Ann. Nucl. Energy 141, 107373 (2020). doi: 10.1016/j.anucene.2020.107373http://doi.org/10.1016/j.anucene.2020.107373
J.R. Travis, P. Royl, G.A. Necker et al., GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Volume 1: Theory and Computational Model. Karlsruhe: FzK. 2000
J.R. Travis, P. Royl, G.A. Necker et al., GASFLOW: A Computational Fluid Dynamics Code for Gases,Aerosols and Combustion. Volume 2: User's Manual. Karlsruhe: FzK. 2000
H. Zhang, Y.B. Li, J.J Xiao et al., Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI. Nucl. Eng. Tech. 49(9),1310-1317 (2017). doi: 10.1016/j.net.2017.08.003http://doi.org/10.1016/j.net.2017.08.003
H. Zhang, Y.B. Li, J.J. Xiao et al., Large eddy simulations of the all-speed turbulent jet flow using 3-D CFD code GASFLOW-MPI. Nucl. Eng. Des. 328(3), 134-144 (2018). doi: 10.1016/j.nucengdes.2017.12.032http://doi.org/10.1016/j.nucengdes.2017.12.032
H. Zhang, Y.B. Li, J.J. Xiao et al., Uncertainty analysis of condensation heat transfer benchmark using CFD code GASFLOW-MPI. Nucl. Eng. Des. 340(12), 308-317 (2018). doi: 10.1016/j.nucengdes.2018.10.007http://doi.org/10.1016/j.nucengdes.2018.10.007
K. Ouyang, W. Chen, Z. He, Analysis of the radioactive atmospheric dispersion induced by ship nuclear power plant severe accident. Ann. Nucl. Energy 127, 395-399 (2019). doi: 10.1016/j.anucene.2018.12.020http://doi.org/10.1016/j.anucene.2018.12.020
Z. Li, T. Zhou, B. Zhang et al., Research on radionuclide migration in coastal waters under nuclear leakage accident. Prog. Nucl. Energy 118, 1-9 (2020). doi: 10.1016/j.pnucene.2019.103114http://doi.org/10.1016/j.pnucene.2019.103114
Z.H. Tang, J.J. Cai, Q. Li et al., The regional scale atmospheric dispersion analysis and environmental radiation impacts assessment for the hypothetical accident in Haiyang nuclear power plant. Prog. Nucl. Energy 125, 103362 (2020). doi: 10.1016/j.pnucene.2020.103362http://doi.org/10.1016/j.pnucene.2020.103362
C. Tsabaris, K. Tsiaras, G. Eleftheriou et al., 137Cs ocean distribution and fate at East Mediterranean Sea in case of a nuclear accident in Akkuyu Nuclear Power Plant. Prog. Nucl. Energy 139(1), 103879 (2021). doi: 10.1016/j.pnucene.2021.103879http://doi.org/10.1016/j.pnucene.2021.103879
G. de With, P. de Jong, CFD modelling of thoron and thoron progeny in the indoor environment. Radiat. Prot. Dosim. 145, 138-144 (2011). doi: 10.1093/rpd/ncr056http://doi.org/10.1093/rpd/ncr056
R.B. Stull, An Introduction to Boundary Layer Me-teorology. Kluwer Academic Publishers,1988
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution