1.Southeast University, Nanjing 210096, China
2.School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China
3.Key Laboratory of Computer Network and Information Integration(Southeast University), Ministry of Education, Nanjing 210096, China
4.Department of Radiology, General Hospital of the Northern Theater of the Chinese People’s Liberation Army, Shenyang 110016, China
5.Laboratory of Image Science and Technology, the School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
6.Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing210008, China
7.Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing 210009, China
8.Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China
chenyang.list@seu.edu.cn
chunfeng.yang@seu.edu.cn
Scan for full text
Kai Chen, Li-Bo Zhang, Jia-Shun Liu, et al. Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet. [J]. Nuclear Science and Techniques 33(3):30(2022)
Kai Chen, Li-Bo Zhang, Jia-Shun Liu, et al. Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet. [J]. Nuclear Science and Techniques 33(3):30(2022) DOI: 10.1007/s41365-022-01014-0.
Cerebral perfusion computed tomography (PCT) is an important imaging modality for evaluating of cerebrovascular diseases and stroke symptoms. With widespread public concern about the potential cancer risks and health hazards associated with cumulative radiation exposure in PCT imaging, considerable research has been conducted to reduce the radiation dose in X-ray-based brain perfusion imaging. Reducing the dose of X-rays causes severe noise and artifacts in PCT images. To solve this problem, we propose a deep learning method called NCS-Unet. The exceptional characteristics of non-subsampled contourlet transform (NSCT) and the Sobel filter are introduced into NCS-Unet. NSCT decomposes the convolved features into high- and low-frequency components. The decomposed high-frequency component retains image edges, contrast imaging traces, and noise, whereas the low-frequency component retains the main image information. The Sobel filter extracts the contours of the original image and the imaging traces caused by the contrast agent decay. The extracted information is added to NCS-Unet to improve its performance in noise reduction and artifact removal. Qualitative and quantitative analyses demonstrated that the proposed NCS-Unet can improve the quality of low-dose cone-beam CT perfusion reconstruction images and the accuracy of perfusion parameter calculations.
Cerebral perfusion CTLow-doseImage denoisingPerfusion parameters
E.G. Hoeffner, I. Case, R. Jain, et al., Cerebral perfusion ct: technique and clinical applications. Radiology 231, 632-644 (2004). doi: 10.1016/j.neurad.2008.03.005http://doi.org/10.1016/j.neurad.2008.03.005
M. Wintermark, H.A. Rowley, M.H. Lev, Acute stroke triage to intravenous thrombolysis and other therapies with advanced ct or mr imaging: pro ct. Radiology 251, 619-626 (2009). doi: 10.1148/radiol.2513081073http://doi.org/10.1148/radiol.2513081073
M. Hirata, Y. Sugawara, Y. Fukutomi, et al., Measurement of radiation dose in cerebral ct perfusion study. Radiation medicine 23, 97-103 (2005).
A. Mnyusiwalla, R.I. Aviv, S.P. Symons, Radiation dose from multidetector row ct imaging for acute stroke. Neuroradiology 51, 635-640 (2009). doi: 10.1007/s00234-009-0543-6http://doi.org/10.1007/s00234-009-0543-6
JrF.A. Mettler, M. Bhargavan, K. Faulkner, et al., Radiologic and nuclear medicine studies in the united states and worldwide: frequency, radiation dose, and comparison with other radiation sources950–2007. Radiology 253, 520-531 (2009). doi: 10.1148/radiol.2532082010http://doi.org/10.1148/radiol.2532082010
H. Yu, S. Zhao, E.A. Hoffman, et al., Ultra-low dose lung ct perfusion regularized by a previous scan. Academic radiology 16, 363-373 (2009). doi: 10.1016/j.acra.2008.09.003http://doi.org/10.1016/j.acra.2008.09.003
M. Wintermark, M. Lev, Fda investigates the safety of brain perfusion ct. AJNR: American Journal of Neuroradiology 31, 2 (2010). doi: 10.3174/ajnr.A1967http://doi.org/10.3174/ajnr.A1967
M. Wiesmann, S. Berg, G. Bohner, et al., Dose reduction in dynamic perfusion ct of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time. European radiology 18, 2967-2974 (2008). doi: 10.1007/s00330-008-1083-xhttp://doi.org/10.1007/s00330-008-1083-x
A. Buades, B. Coll, J.M. Morel, A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 490-530 (2005). doi: 10.1137/040616024http://doi.org/10.1137/040616024
J. Donahue, M. Wintermark, Perfusion ct and acute stroke imaging: foundations, applications, and literature review. Journal of Neuroradiology 42, 21-29 (2015). doi: 10.1016/j.neurad.2014.11.003http://doi.org/10.1016/j.neurad.2014.11.003
L.L. Geyer, U.J. Schoepf, F.G. Meinel, et al., State of the art: iterative ct reconstruction techniques. Radiology 276, 339-357 (2015). doi: 10.1148/radiol.2015132766http://doi.org/10.1148/radiol.2015132766
P.B. Noël, A.A. Fingerle, B. Renger, et al., A clinical comparison study of a novel statistical iterative and filtered backprojection reconstruction. in Medical Imaging 2011: Physics of Medical Imaging, Vol. 7961, International Society for Optics and Photonics, 2011, p. 79612L. doi: 10.1117/12.877971http://doi.org/10.1117/12.877971
Y. Funama, K. Taguchi, D. Utsunomiya, et al., Combination of a low tube voltage technique with the hybrid iterative reconstruction (idose) algorithm at coronary ct angiography. Journal of computer assisted tomography 35, 480 (2011). doi: 10.1097/RCT.0b013e31821fee94http://doi.org/10.1097/RCT.0b013e31821fee94
R. Fang, T. Chen, P.C. Sanelli, Towards robust deconvolution of low-dose perfusion ct: Sparse perfusion deconvolution using online dictionary learning. Medical image analysis 17, 417-428 (2013). doi: 10.1016/j.media.2013.02.005http://doi.org/10.1016/j.media.2013.02.005
X. Tian, D. Zeng, S. Zhang, et al., Robust low-dose dynamic cerebral perfusion ct image restoration via coupled dictionary learning scheme. Journal of X-ray science and technology 24, 837-853 (2016). doi: 10.3233/XST-160593http://doi.org/10.3233/XST-160593
H. Ji, S. Huang, Z. Shen, et al., Robust video restoration by joint sparse and low rank matrix approximation. SIAM Journal on Imaging Sciences 4, 1122-1142 (2011). doi: 10.1137/100817206http://doi.org/10.1137/100817206
J. Suo, Y. Deng, L. Bian, et al., Joint non-gaussian denoising and superresolving of raw high frame rate videos. IEEE transactions on image processing 23, 1154-1168 (2014). doi: 10.1109/TIP.2014.2298976http://doi.org/10.1109/TIP.2014.2298976
H. Gao, J.F. Cai, Z. Shen, et al., Robust principal component analysis-based four-dimensional computed tomography. Physics in Medicine & Biology 56, 3181 (2011). doi: 10.1088/0031-9155/56/11/002http://doi.org/10.1088/0031-9155/56/11/002
H. Gao, H. Yu, S. Osher, et al., Multi-energy ct based on a prior rank, intensity and sparsity model (prism). Inverse problems 27, 115012 (2011). doi: 10.1088/0266-5611/27/11/115012http://doi.org/10.1088/0266-5611/27/11/115012
S.G. Lingala, Y. Hu, E. DiBella, et al., Accelerated dynamic mri exploiting sparsity and low-rank structure: kt slr. IEEE transactions on medical imaging 30, 1042-1054 (2011). doi: 10.1109/TMI.2010.2100850http://doi.org/10.1109/TMI.2010.2100850
Z. Tian, X. Jia, K. Yuan, et al., Low-dose ct reconstruction via edge-preserving total variation regularization. Physics in Medicine & Biology 56, 5949 (2011). doi: 10.1088/0031-9155/56/18/011http://doi.org/10.1088/0031-9155/56/18/011
R. Fang, P.C. Sanelli, S. Zhang, et al., in International Conference on Medical Image Computing and Computer-Assisted Intervention, Tensor total-variation regularized deconvolution for efficient low-dose ct perfusion. Springer, 2014, pp. 154-161. doi: 10.1007/978-3-319-10404-1_20http://doi.org/10.1007/978-3-319-10404-1_20
R. Fang, S. Zhang, T. Chen, et al., Robust low-dose ct perfusion deconvolution via tensor total-variation regularization. IEEE transactions on medical imaging 34, 1533-1548 (2015). doi: 10.1109/TMI.2015.2405015http://doi.org/10.1109/TMI.2015.2405015
C.A. Mistretta, Undersampled radial mr acquisition and highly constrained back projection (hypr) reconstruction: Potential medical imaging applications in the post-nyquist era. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine 29, 501-516 (2009). doi: 10.1002/jmri.21683http://doi.org/10.1002/jmri.21683
H.K. Song, L. Dougherty, k-space weighted image contrast (kwic) for contrast manipulation in projection reconstruction mri. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 44, 825-832 (2000). doi: 10.1002/1522-2594(200012)44:6<825::aid-mrm2>3.0.co;2-dhttp://doi.org/10.1002/1522-2594(200012)44:6<825::aid-mrm2>3.0.co;2-d
L. Feng, L. Axel, H. Chandarana, et al., Xd-grasp: golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing. Magnetic resonance in medicine 75, 775-788 (2016). doi: 10.1002/mrm.25665http://doi.org/10.1002/mrm.25665
T. Martin, J. Hoffman, J.R. Alger, et al., Low-dose ct perfusion with projection view sharing. Medical physics 45, 101-113 (2018). doi: 10.1002/mp.12640http://doi.org/10.1002/mp.12640
J.S. Liu, Y.K. Zhang, H. Tang, et al., Rollback reconstruction for tdc enhanced perfusion imaging. Nuclear Science and Techniques 32, 1-11 (2021). doi: 10.1007/s41365-021-00918-7http://doi.org/10.1007/s41365-021-00918-7
J. Ma, H. Zhang, Y. Gao, et al., Iterative image reconstruction for cerebral perfusion ct using a pre-contrast scan induced edge-preserving prior. Physics in Medicine & Biology 57, 7519 (2012). doi: 10.1088/0031-9155/57/22/7519http://doi.org/10.1088/0031-9155/57/22/7519
A.M. Mendrik, E.j. Vonken, B. van Ginneken, et al., Tips bilateral noise reduction in 4d ct perfusion scans produces high-quality cerebral blood flow maps. Physics in Medicine & Biology 56, 3857 (2011). doi: 10.1088/0031-9155/56/13/008http://doi.org/10.1088/0031-9155/56/13/008
J. Ma, J. Huang, Q. Feng, et al., Low-dose computed tomography image restoration using previous normal-dose scan. Medical physics 38, 5713-5731 (2011). doi: 10.1118/1.3638125http://doi.org/10.1118/1.3638125
M. Supanich, Y. Tao, B. Nett, et al., Radiation dose reduction in time-resolved ct angiography using highly constrained back projection reconstruction. Physics in Medicine & Biology 54, 4575 (2009). doi: 10.1088/0031-9155/54/14/013http://doi.org/10.1088/0031-9155/54/14/013
K.X. Huang, Z. Deng, X.F. Xu, et al., Optimized energy thresholds in a spectral computed tomography scan for contrast agent imaging. Nuclear Science and Techniques 30, 38 (2019). doi: 10.1007/s41365-019-0563-9http://doi.org/10.1007/s41365-019-0563-9
T. Boutelier, K. Kudo, F. Pautot, et al., Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE transactions on medical imaging 31, 1381-1395 (2012). doi: 10.1109/TMI.2012.2189890http://doi.org/10.1109/TMI.2012.2189890
L. He, B. Orten, S. Do, et al., A spatio-temporal deconvolution method to improve perfusion ct quantification. IEEE Transactions on Medical Imaging 29, 1182-1191 (2010). doi: 10.1109/TMI.2010.2043536http://doi.org/10.1109/TMI.2010.2043536
B. Sun, S.S. Hou, S. Zeng, et al., 3d characterization of porosity and minerals of low-permeability uranium-bearing sandstone based on multi-resolution image fusion. Nuclear Science and Techniques 31, 1-20 (2020). doi: 10.1007/s41365-020-00810-whttp://doi.org/10.1007/s41365-020-00810-w
Y. Zhang, D. Hu, Q. Zhao, et al., Clear: Comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose ct imaging. IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2021.3097808http://doi.org/10.1109/TMI.2021.3097808
H. Chen, Y. Zhang, Y. Chen, et al., Learn: Learned experts’ assessment-based reconstruction network for sparse-data ct. IEEE transactions on medical imaging 37, 1333-1347 (2018). doi: 10.1109/TMI.2018.2805692http://doi.org/10.1109/TMI.2018.2805692
H. Chen, Y. Zhang, M.K. Kalra, et al., Low-dose ct with a residual encoder-decoder convolutional neural network. IEEE transactions on medical imaging 36, 2524-2535 (2017). doi: 10.1109/TMI.2017.2715284http://doi.org/10.1109/TMI.2017.2715284
W. Xia, Z. Lu, Y. Huang, et al., Magic: Manifold and graph integrative convolutional network for low-dose ct reconstruction. IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2021.3088344http://doi.org/10.1109/TMI.2021.3088344
W. Xia, Z. Lu, Y. Huang, et al., Ct reconstruction with pdf: Parameter-dependent framework for data from multiple geometries and dose levels. IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2021.3085839http://doi.org/10.1109/TMI.2021.3085839
Y. Zhang, T. Lv, R. Ge, et al., Cd-net: Comprehensive domain network with spectral complementary for dect sparse-view reconstruction. IEEE Transactions on Computational Imaging 7, 436-447 (2021). doi: 10.1109/TCI.2021.3070184http://doi.org/10.1109/TCI.2021.3070184
D. Hu, Y. Zhang, J. Liu, et al., Special: Single-shot projection error correction integrated adversarial learning for limited-angle ct. IEEE Transactions on Computational Imaging. doi: 10.1109/TCI.2021.3098922http://doi.org/10.1109/TCI.2021.3098922
D. Hu, W. Wu, M. Xu, et al., Sister: Spectral-image similarity-based tensor with enhanced-sparsity reconstruction for sparse-view multi-energy ct. IEEE Transactions on Computational Imaging 6, 477-490 (2019). doi: 10.1109/TCI.2019.2956886http://doi.org/10.1109/TCI.2019.2956886
H. Chen, Y. Zhang, W. Zhang, et al., Low-dose ct via convolutional neural network. Biomedical optics express 8, 679-694 (2017). doi: 10.1364/BOE.8.000679http://doi.org/10.1364/BOE.8.000679
E. Kang, J. Min, J.C. Ye, A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction. Medical physics 44, e360-e375 (2017). doi: 10.1002/mp.12344http://doi.org/10.1002/mp.12344
K. Zhang, W. Zuo, Y. Chen, et al., Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing 26, 3142-3155 (2017). doi: 10.1109/TIP.2017.2662206http://doi.org/10.1109/TIP.2017.2662206
Y.J. Ma, Y. Ren, P. Feng, et al., Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography. Nuclear Science and Techniques 32, 1-14 (2021). doi: 10.1007/s41365-021-00874-2http://doi.org/10.1007/s41365-021-00874-2
H.K. Yang, K.C. Liang, K.J. Kang, et al., Slice-wise reconstruction for low-dose cone-beam ct using a deep residual convolutional neural network. Nuclear Science and Techniques 30, 1-9 (2019). doi: 10.1007/s41365-019-0581-7http://doi.org/10.1007/s41365-019-0581-7
V.S. Kadimesetty, S. Gutta, S. Ganapathy, et al., Convolutional neural network-based robust denoising of low-dose computed tomography perfusion maps. IEEE Transactions on Radiation and Plasma Medical Sciences 3, 137-152 (2018). doi: 10.1109/TRPMS.2018.2860788http://doi.org/10.1109/TRPMS.2018.2860788
K. Dabov, A. Foi, V. Katkovnik, et al., Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing 16, 2080-2095 (2007). doi: 10.1109/TIP.2007.901238http://doi.org/10.1109/TIP.2007.901238
K. Kreutz-Delgado, J.F. Murray, B.D. Rao, et al., Dictionary learning algorithms for sparse representation. Neural computation 15, 349-396 (2003). doi: 10.1162/089976603762552951http://doi.org/10.1162/089976603762552951
R.S. Pathak, The wavelet transform, Vol. 4, (Springer Science & Business Media, 2009)
D. Zhang, Wavelet transform. in Fundamentals of Image Data Mining, (Springer, 2019), pp. 35-44 doi: 10.1007/978-3-030-17989-2_3http://doi.org/10.1007/978-3-030-17989-2_3
L. Chun-Lin, A tutorial of the wavelet transform. NTUEE, Taiwan.
H.J. Nussbaumer, in Fast Fourier Transform and Convolution Algorithms, The fast fourier transform. (Springer, 1981), pp. 80-111
T. Sumanaweera, D. Liu, Medical image reconstruction with the fft. GPU gems 2, 765-784 (2005).
X. Zhang, Y. Shen, S. Li, et al., Medical image registration in fractional fourier transform domain. Optik 124, 1239-1242 (2013). doi: 10.1016/j.ijleo.2012.03.031http://doi.org/10.1016/j.ijleo.2012.03.031
M.N. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on image processing 14, 2091-2106 (2005). doi: 10.1109/TIP.2005.859376http://doi.org/10.1109/TIP.2005.859376
Y. Xu, J.B. Weaver, D.M. Healy, et al., Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE transactions on image processing 3, 747-758 (1994). doi: 10.1109/83.336245http://doi.org/10.1109/83.336245
M. Unser, A. Aldroubi, A review of wavelets in biomedical applications. Proceedings of the IEEE 84, 626-638 (1996). doi: 10.1109/5.488704http://doi.org/10.1109/5.488704
S. Li, B. Yang, J. Hu, Performance comparison of different multi-resolution transforms for image fusion. Information Fusion 12, 74-84 (2011). doi: 10.1016/j.inffus.2010.03.002http://doi.org/10.1016/j.inffus.2010.03.002
R.D. Nowak, Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing 8, 1408-1419 (1999). doi: 10.1109/83.791966http://doi.org/10.1109/83.791966
A. Pizurica, W. Philips, I. Lemahieu, et al., A versatile wavelet domain noise filtration technique for medical imaging. IEEE transactions on medical imaging 22, 323-331 (2003). doi: 10.1109/TMI.2003.809588http://doi.org/10.1109/TMI.2003.809588
A.L. Da Cunha, J. Zhou, M.N. Do, The nonsubsampled contourlet transform: theory, design, and applications. IEEE transactions on image processing 15, 3089-3101 (2006). doi: 10.1109/TIP.2006.877507http://doi.org/10.1109/TIP.2006.877507
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution