1.College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No. 1 East 3 Road, Erxian Bridge, Chenghua District, Chengdu 610059, China
2.Jiangxi Engineering Technology Research Center of Nuclear Geoscience Data Science and System, East China University of Technology, Nanchang 330013, China
3.China Testing Technology Co., Ltd., Chengdu 610021, China
* zjb@cdut.edu.cn (Jian-Bin Zhou).
Scan for full text
Xue-Yuan Wang, Jian-Bin Zhou, Ming Wang, et al. Signal modeling and impulse response shaping for semiconductor detectors. [J]. Nuclear Science and Techniques 33(4):46(2022)
Xue-Yuan Wang, Jian-Bin Zhou, Ming Wang, et al. Signal modeling and impulse response shaping for semiconductor detectors. [J]. Nuclear Science and Techniques 33(4):46(2022) DOI: 10.1007/s41365-022-01027-9.
The output-signal models and impulse response shaping (IRS) functions of semiconductor detectors are important for establishing high-precision measurement systems. In this paper, an output-signal model for semiconductor detector systems is proposed. According to the proposed model, a multistage cascade deconvolution IRS algorithm was developed using the C-R inverse system, R-C inverse system, and differentiator system. The silicon drift detector signals acquired from the analog-to-digital converter were tested. The experimental results indicated that the shaped pulses obtained using the proposed model had no undershoot, and the average peak base width of the output shaped pulses was reduced by 36% compared with that for a simple model proposed in a previous work [1]. Offline processing results indicated that compared with the traditional IRS algorithm, the average peak base width of the output shaped pulses obtained using the proposed algorithm was reduced by 11%, and the total elapsed time required for pulse shaping was reduced by 26%. The proposed algorithm avoids recursive calculation. If the sampling frequency of the digital system reaches 100 MHz, the proposed algorithm can be simplified to integer arithmetic. The proposed IRS algorithm can be applied to high-resolution energy spectrum analysis, high-counting rate energy spectrum correction, and coincidence and anti-coincidence measurements.
Output-signal modelImpulse response shapingC-R inverse systemR-C inverse systemInteger arithmetic
M. Yu. Kantor, A.V. Sidorov, Shaping pulses of radiation detectors into a true Gaussian form. J. Instrum. 14, P01004 (2019). doi: 10.1088/1748-0221/14/01/P01004http://doi.org/10.1088/1748-0221/14/01/P01004
L. Abbene, G. Gerardi, F. Principato, Real time digital pulse processing for X-ray and gamma ray semiconductor detectors. Nucl. Instrum. Meth. A. 730, 124-128 (2013). doi: 10.1016/j.nima.2013.04.053http://doi.org/10.1016/j.nima.2013.04.053
M. Nakhostin, K. Hitomi, Pulse-height loss in the signal readout circuit of compound semiconductor detectors. Nucl. Instrum. Meth. A. 893, 146-150 (2018). doi: 10.1016/j.nima.2018.03.053http://doi.org/10.1016/j.nima.2018.03.053
M. R. Mohammadian-Behbahani, S. Saramad, Pile-up correction algorithm based on successive integration for high count rate medical imaging and radiation spectroscopy. Nucl. Instrum. Meth. A. 897, 1-7 (2018). doi: 10.1016/j.nima.2018.04.028http://doi.org/10.1016/j.nima.2018.04.028
P. Födisch, J. Wohsmann, B. Lange et al., Digital high-pass filter deconvolution by means of an infinite impulse response filter. Nucl. Instrum. Meth. A 830, 484-496 (2016). doi: 10.1016/j.nima.2016.06.019http://doi.org/10.1016/j.nima.2016.06.019
M. Bogova, C. Csato, Implementation of a truncated cusp filter for real-time digital pulse processing in nuclear spectrometry. Nucl. Instrum. Meth. A. 694, 101-106 (2012). doi: 10.1016/j.nima.2012.07.042http://doi.org/10.1016/j.nima.2012.07.042
E. M. Khilkevitch, A. E. Shevelev, I. N. Chugunov et al., Advanced algorithms for signal processing scintillation gamma ray detectors at high counting rates. Nucl. Instrum. Meth. A. 977, 2 (2020).doi: 10.1016/j.nima.2020.164309http://doi.org/10.1016/j.nima.2020.164309
X. Hong, J. B. Zhou, S. J. Ni et al., Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping. J. Synchrotron Radiat. 25, 505-513 (2018). doi: 10.1107/S1600577518000322http://doi.org/10.1107/S1600577518000322
Y. Liu, M. Wang, W.J. Wan et al., Counting‐loss correction method based on dual‐exponential impulse response shaping. J. Synchrotron Radiat. 27, 1609-1613 (2020). doi: 10.1107/S1600577520010954http://doi.org/10.1107/S1600577520010954
V. T. Jordanov, G. F. Knoll, A. C. Huber et al., Digital techniques for real-time pulse shaping in radiation measurements. Nucl. Instrum. Methods Phys. Res. 353, 1-3 (1994). doi: 10.1016/0168-9002(94)91652-7http://doi.org/10.1016/0168-9002(94)91652-7
C. Imperiale, A. Imperiale, On nuclear spectrometry pulses digital shaping and processing. Measurement. 30, 1 (2001). doi: 10.1016/S0263-2241(00)00057-9http://doi.org/10.1016/S0263-2241(00)00057-9
C. Zhao, H. Xiong, Y. Liu et al., A new digital filter based on sinusoidal function for gamma spectroscopy. Nucl. Instrum. Meth. A 944, 162582 (2019). doi: 10.1016/j.nima.2019.162582http://doi.org/10.1016/j.nima.2019.162582
L. Abbene, G. Gerardi, High-rate dead-time corrections in a general purpose digital pulse processing system. J. Synchrotron Radiat. 22, 1190-1201 (2015). doi: 10.1107/S1600577515013776http://doi.org/10.1107/S1600577515013776
E. R. Thuraka, R. Ganesh, D. B. Prakash et al., Digital Multi-Channel analyzer for detection and analysis of radiation in nuclear spectroscopy. Mater. Today: Proc. 38, 3160-3167 (2021). doi: 10.1016/j.matpr.2020.09.580http://doi.org/10.1016/j.matpr.2020.09.580
X. Wen, H. Yang, Study on a digital pulse processing algorithm based on template-matching for high-throughput spectroscopy. Nucl. Instrum. Meth. A 784, 269-273 (2015). doi: 10.1016/j.nima.2014.11.008http://doi.org/10.1016/j.nima.2014.11.008
A. Fernandes, R. C. Pereira, D. F. Valcarcel et al., Real-time algorithms for JET hard X-ray and gamma-ray profile monitor. Fusion Eng. Des. 89, 3 (2013). doi: 10.1016/j.fusengdes.2013.08.002http://doi.org/10.1016/j.fusengdes.2013.08.002
M. Shanmugam, Y. B. Acharya, S. V. Vadawale et al., A new technique for measuring the leakage current in Silicon Drift Detector based X-ray spectrometer-implications for on-board calibration. J. Instrum. 10, 02 (2015). doi: 10.1088/1748-0221/10/02/P02009http://doi.org/10.1088/1748-0221/10/02/P02009
Y. Liu, J. F. Huang, S. Cai et al., Electric simulation of silicon drift detector for single photon measurement. Epl-Europhys. Lett. 130, 50006 (2020). doi: 10.1209/0295-5075/130/50006http://doi.org/10.1209/0295-5075/130/50006
V. T. Jordanov, Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding. Nucl. Instrum. Meth. A 805, 63-71 (2015). doi: 10.1016/j.nima.2015.07.040http://doi.org/10.1016/j.nima.2015.07.040
M. Wang, X. Hong, J. B. Zhou et al., Rising time restoration for nuclear pulse using a mathematic model. Appl. Radiat. Isotopes. 137, 280-284 (2018). doi: 10.1016/j.apradiso.2018.01.018http://doi.org/10.1016/j.apradiso.2018.01.018
H. P. Wang, J. B. Zhou, X. P. Ouyang et al., Application of Pole-Zero Cancellation Circuit in Nuclear Signal Filtering and Shaping Algorithm. Nucl. Sci. Tech. 32, 8 (2021). doi: 10.1007/s41365-021-00916-9http://doi.org/10.1007/s41365-021-00916-9
https://www.amptek.com/internal-products/xr-100-xray-detector-and-preamplifierhttps://www.amptek.com/internal-products/xr-100-xray-detector-and-preamplifier; 2022 [accessed 15 January 2022]
M. Balmer, K. Gamage, G. C. Taylor, Comparative analysis of pulse shape discrimination methods in a 6Li loaded plastic scintillator. Nucl. Instrum. Meth. A 788, 146-153 (2015). doi: 10.1016/j.nima.2015.03.089http://doi.org/10.1016/j.nima.2015.03.089
N. Menaa, P. D’. Agostino, B. Zakrzewski et al., Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors. Nucl. Instrum. Meth. A 652, 1 (2011). doi: 10.1016/j.nima.2010.08.095http://doi.org/10.1016/j.nima.2010.08.095
M.D. Haselman, M. Ieee, S. Hauck et al., FPGA-based pulse pileup correction. IEEE Nuclear Science Symposuim & Medical Imaging Conference 3105-3112 (2010). doi: 10.1109/NSSMIC.2010.5874372http://doi.org/10.1109/NSSMIC.2010.5874372
M. D. Haselman, J. Pasko, S. Hauck et al., FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery. IEEE T. Nucl. Sci. 59, 5 (2012). doi: 10.1109/TNS.2012.2207403http://doi.org/10.1109/TNS.2012.2207403
P. K. Meher, Seamless Pipelining of DSP Circuits. Circ. Syst. Signal Pr. 35,4 (2015). doi: 10.1007/s00034-015-0089-2http://doi.org/10.1007/s00034-015-0089-2
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution