1.School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
hlchen1@ustc.edu.cn
Scan for full text
Guang-Liang Yang, Hai-Long Liao, Tao Ding, et al. Development and validation of a new oxide fuel rod performance analysis code for the liquid metal fast reactor. [J]. Nuclear Science and Techniques 33(5):66(2022)
Guang-Liang Yang, Hai-Long Liao, Tao Ding, et al. Development and validation of a new oxide fuel rod performance analysis code for the liquid metal fast reactor. [J]. Nuclear Science and Techniques 33(5):66(2022) DOI: 10.1007/s41365-022-01045-7.
The integrity and reliability of fuel rods under both normal and accidental operating conditions are of great importance for nuclear reactors. In this study, considering various irradiation behaviors, a fuel rod performance analysis code, named KMC-Fueltra, was developed to evaluate the thermal-mechanical performance of oxide fuel rods under both normal and transient conditions in the LMFR. The accuracy and reliability of the KMC-Fueltra were validated by analytical solutions as well as the results obtained from codes and experiments. The results indicated that KMC-Fueltra can predict the performance of oxide fuel rods under both normal and transient conditions in the LMFR.
Fuel rod analysis codeThermal-mechanical performanceIrradiation behaviorsPellet-cladding mechanical interactionLiquid metal fast reactor
X. Luo, C. Wang, Z.R. Zou et al., Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor. Nucl. Sci. Tech. 33, 18 (2022). doi: 10.1007/s41365-022-01008-yhttp://doi.org/10.1007/s41365-022-01008-y
V.P. Tran, K.C. Nguyen, D. Hartanto et al., Development of a PARCS/Serpent model for neutronics analysis of the Dalat nuclear research reactor. Nucl. Sci. Tech. 32, 15 (2021). doi: 10.1007/s41365-021-00855-5http://doi.org/10.1007/s41365-021-00855-5
W.S. Duan, Z.R. Zou, X. Luo et al., Startup scheme optimization and flow instability of natural circulation lead-cooled fast reactor SNCLFR-100. Nucl. Sci. Tech. 32, 133 (2021). doi: 10.1007/s41365-021-00970-3http://doi.org/10.1007/s41365-021-00970-3
H.Y. Liao, K.L. Lu, H. Yao et al., Development of a transient module based on FROBA-ROD code and assessment for fuel rod performance under reactivity-initiated accident. Ann. Nucl. Energy. 160, 108377 (2021). doi: 10.1016/j.anucene.2021.108377http://doi.org/10.1016/j.anucene.2021.108377
Y.N. He, P. Chen, Y.W. Wu et al., Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way. Nucl. Eng. Des. 328, 27-35 (2018). doi: 10.1016/j.nucengdes.2017.12.019http://doi.org/10.1016/j.nucengdes.2017.12.019
R. Godesar, M. Guyette, N. Hoppe, COMETHE II-A computer code for predicting the mechanical and thermal behavior of a fuel pin. Nucl. Appl. Technol. 9(2): 205-217 (1970). doi: 10.13182/NT70-A28809http://doi.org/10.13182/NT70-A28809
V.Z. Jankus, R.W. Weeks, LIFE-II - A computer analysis of fast-reactor fuel-element behavior as a function of reactor operating history. Nucl. Eng. Des. 18(1): 83-96 (1972). doi: 10.1016/0029-5493(72)90038-6http://doi.org/10.1016/0029-5493(72)90038-6
J. Wordsworth, IAMBUS-1 - A digital computer code for the design, in-pile performance prediction and post-irradiation analysis of arbitrary fuel rods. Part I: Theory and modelling[J]. Nucl. Eng. Des. 31(3): 309-336 (1974). doi: 10.1016/0029-5493(75)90167-3http://doi.org/10.1016/0029-5493(75)90167-3
L. Luzzi, A. Cammi, V.D. Marcello et al., Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor. Nucl. Eng. Des. 277, 173-187 (2014). doi: 10.1016/j.nucengdes.2014.06.032http://doi.org/10.1016/j.nucengdes.2014.06.032
Y. Tsuboi, H. Endo, T. Ishizu et al., Analysis of fuel pin behavior under slow-ramp type transient overpower condition by using the fuel performance evaluation code ‘FEMAXI-FBR’. J. Nucl. Sci. Technol. 49, 408-424 (2012). doi: 10.1080/00223131.2012.669242http://doi.org/10.1080/00223131.2012.669242
A. Karahan, and J. Buongiorno, Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors. J. Nucl. Mater. 396.2-3, 272-282 (2010). doi: 10.1016/j.jnucmat.2009.11.021http://doi.org/10.1016/j.jnucmat.2009.11.021
K.J. Miles and D. J. Hill. DEFORM-4: fuel pin characterization and transient response in the SAS4A accident analysis code system. No. CONF-860501-10. Argonne National Lab., IL (USA), 1986. URL: https://www.osti.gov/biblio/5737020https://www.osti.gov/biblio/5737020
K. Mikityuk, A. Shestopalov, FRED fuel behaviour code: Main models and analysis of Halden IFA-503.2 tests. Nucl. Eng. Des. 241.7, 2455-2461 (2011). doi: 10.1016/j.nucengdes.2011.04.033http://doi.org/10.1016/j.nucengdes.2011.04.033
C. Huang, Master Thesis, Fast reactor fuel rod life analysis program. China Institute of Atomic Energy, 2000. URL:https://xueshu.baidu.com/usercenter/paper/show?paperid=d1191b859359523417f3956ec12f137e&site=xueshu_sehttps://xueshu.baidu.com/usercenter/paper/show?paperid=d1191b859359523417f3956ec12f137e&site=xueshu_se
A.M. Ross, R.L. Stoute, Heat transfer coefficient between UO2 and Zircaloy-2. No. AECL--1552. Atomic Energy of Canada Limited, 1962. URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:43103492https://inis.iaea.org/search/search.aspx?orig_q=RN:43103492
D.D. Lanning, C.R. Hann, Review of methods applicable to the calculation of gap conductance in Zircaloy-clad UO2 fuel rods. No. BNWL-1894. Battelle Pacific Northwest Labs., Richland, Wash.(USA), 1975. URL: https://www.osti.gov/servlets/purl/4209005https://www.osti.gov/servlets/purl/4209005
K. Mikityuk, Heat transfer to liquid metal: review of data and correlations for tube bundles. Nucl. Eng. Des. 239.4, 680-687 (2009). doi: 10.1016/j.nucengdes.2008.12.014http://doi.org/10.1016/j.nucengdes.2008.12.014
A.H. Booth. A method of calculating fission gas diffusion from UO2 fuel and its application to the X-2-f loop test. No. AECL--496. Atomic Energy of Canada Limited, 1957. URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:43123872https://inis.iaea.org/search/search.aspx?orig_q=RN:43123872
J.A. Turnbull, C. A. Friskney, The relation between microstructure and the release of unstable fission products during high temperature irradiation of uranium dioxide. J. Nucl. Mater. 71.2, 238-248 (1978). doi: 10.1016/0022-3115(78)90421-Xhttp://doi.org/10.1016/0022-3115(78)90421-X
M. V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation. Nucl. Sci. En. 37.2, 180-185 (1969). doi: 10.13182/NSE69-A20676http://doi.org/10.13182/NSE69-A20676
M.H. Wood, J. R. Matthews, A simple operational gas release and swelling model: I. Intragranular gas. J. Nucl. Mater. 91.1, 35-40 (1980). doi: 10.1016/0022-3115(80)90029-Xhttp://doi.org/10.1016/0022-3115(80)90029-X
J.R. Matthews, M.H. Wood, A simple operational gas release and swelling model: II. Grain boundary gas. J. Nucl. Mater. 91.2-3, 241-256 (1980). doi: 10.1016/0022-3115(80)90224-Xhttp://doi.org/10.1016/0022-3115(80)90224-X
F.P. Qi. Development and Application of a Fuel Element Behavior Analysis code for Liquid Metal Fast Reactor. University of Science and Technology of China, 2018. URL: http://cdmd.cnki.com.cn/Article/CDMD-10358-1018104971.htmhttp://cdmd.cnki.com.cn/Article/CDMD-10358-1018104971.htm
V.Z. Jankus, and R. W. Weeks, LIFE-II—A computer analysis of fast-reactor fuel-element behavior as a function of reactor operating history. Nucl. Eng. Des. 18.1, 83-96 (1972). doi: 10.1016/0029-5493(72)90038-6http://doi.org/10.1016/0029-5493(72)90038-6
L.J. Siefken, E.W. Coryell, E.A. Harvego et al. "SCDAP/RELAP5/MOD 3.3 code manual, MATPRO-A library of materials properties for light water reactor accident analysis." Idaho National Engineering and Environmental Laboratory 2001 (2001). URL: https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6150/v4/index.htmlhttps://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6150/v4/index.html
J.D. Hales, R.L. Williamson, S.R. Novascone et al. BISON theory manual the equations behind nuclear fuel analysis. No. INL/EXT-13-29930. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2016. doi: 10.2172/1374503http://doi.org/10.2172/1374503
Sobolev, Vitaly. "Database of thermophysical properties of liquid metal coolants for GEN-IV." (2011). URL:https://publications.sckcen.be/portal/files/356024/Coolants_GEN-IV(BLG-1069_rev1).pdfhttps://publications.sckcen.be/portal/files/356024/Coolants_GEN-IV(BLG-1069_rev1).pdf
A. D’Angelo, B. Arien, V. Sobolev et al. "Benchmark on beam interruptions in an accelerator-driven system. Final report on phase 1 calculations." (2003). URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:34079713https://inis.iaea.org/search/search.aspx?orig_q=RN:34079713
Yang G, Guo Z, Wang P, et al. "Research and validation on the numerical algorithm of mechanical module in a transient fuel rod performance code for fast reactor." Ann. Nucl. Energy. 171 (2022): 108991. doi: 10.1016/j.anucene.2022.108991http://doi.org/10.1016/j.anucene.2022.108991
L.K. Cao, G.L. Yang, H.L. Chen. "Transient sub-channel code development for lead-cooled fast reactor using the second-order upwind scheme." Prog. Nucl. Energy 110 (2019): 199-212. doi: 10.1016/j.pnucene.2018.09.022http://doi.org/10.1016/j.pnucene.2018.09.022
T. Aoyama. The operational experience of the experimental fast reactor'JOYO'. No. JAERI-M--92-028. 1992. URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:23087288https://inis.iaea.org/search/search.aspx?orig_q=RN:23087288
M. Konstantin, S. Pelloni, P. Coddington et al., "FAST: An advanced code system for fast reactor transient analysis." Ann. Nucl. Energy. 32.15 (2005): 1613-1631. doi: 10.1016/j.anucene.2005.06.002http://doi.org/10.1016/j.anucene.2005.06.002
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution