1.The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2.Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
3.Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
fszhang@bnu.edu.cn
Scan for full text
Bing Li, Na Tang, Yu-Hai Zhang, et al. Production of p-rich nuclei with Z=20-25 based on radioactive ion beams. [J]. Nuclear Science and Techniques 33(5):55(2022)
Bing Li, Na Tang, Yu-Hai Zhang, et al. Production of p-rich nuclei with Z=20-25 based on radioactive ion beams. [J]. Nuclear Science and Techniques 33(5):55(2022) DOI: 10.1007/s41365-022-01048-4.
Within the framework of isospin-dependent Boltzmann-Langevin model, the production cross sections of proton-rich nuclei with Z = 20-25 are investigated. According to the reaction results for different isospin of projectiles ,48,Ni,49,Ni, and ,50,Ni, proton-rich fragments tend to be more easily produced in reactions with the proton-rich projectile ,48,Ni. The production cross-sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy. It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with Z = 20-25. In projectile fragmentation reactions based on the radioactive ion beam of ,48,Ni at 345 MeV/u, several unknown proton-rich nuclei near the proton drip line are generated in the simulations. All these new nuclei are near-projectile elements near Z = 28. The production cross sections of the new nuclei ,34,Ca,37,38,Sc,38,Ti,40,41,42,V,40,41,Cr, and ,42,43,44,45,Mn are in the range of 10,-2, – 10,2, mb. Hence, projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with Z = 20-25.
Production cross sectionsRadioactive ion beamsIsospin-dependent Boltzmann-Langevin model
J. Erler, N. Birge, M. Kortelainen et al., The limits of the nuclear landscape. Nature 486, 509-512 (2012). doi: 10.1038/nature11188http://doi.org/10.1038/nature11188
O. Fasoula, G. A. Souliotis, Y. K. Kwon et al., Production cross sections and angular distributions of neutron-rich rare isotopes from 15 MeV/nucleon Kr-induced collisions: toward the r-process path (2021). arXiv: 2103.10688 [nucl-th]
D. Y. Tao, T. K. Dong, S. J. Yun et al., Short-lived radionuclide production cross sections calculated by the Liège intranuclear cascade model. Phys. Rev. C 103, 044606 (2021). doi: 10.1103/PhysRevC.103.044606http://doi.org/10.1103/PhysRevC.103.044606
M. Mocko, M. B. Tsang, L. Andronenko et al., Projectile fragmentation of 40Ca, 48Ca, 58Ni, and 64Ni at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). doi: 10.1103/PhysRevC.74.054612http://doi.org/10.1103/PhysRevC.74.054612
Z. J. Wu, L. Guo, Production of proton-rich actinide nuclei in the multinucleon transfer reaction 58Ni+232Th. Sci. China-Phys. Mech. Astron. 63, 242021 (2020). doi: 10.1007/s11433-019-1484-0http://doi.org/10.1007/s11433-019-1484-0
Y. Jin, C. Y. Niu, K. W. Brown et al., First observation of the four-proton unbound nucleus 18Mg. Phys. Rev. Lett. 127, 262502 (2021). doi: 10.1103/PhysRevLett.127.262502http://doi.org/10.1103/PhysRevLett.127.262502
M. Thoennessen, Discovery of nuclides project (2021), https://people.nscl.msu.edu/thoennes/isotopeshttps://people.nscl.msu.edu/thoennes/isotopes. Accessed 31 Dec 2021
M. Thoennessen, Exploring new neutron-rich nuclei with the facility for rare isotope beams. Nuclear Data Sheets 118, 85-90 (2014). doi: 10.1016/j.nds.2014.04.008http://doi.org/10.1016/j.nds.2014.04.008
K. Langanke, M. Wiescher, Nuclear reactions and stellar processes. Rep. Prog. Phys. 64, 1657-1701 (2001). doi: 10.1088/0034-4885/64/12/202http://doi.org/10.1088/0034-4885/64/12/202
X. F. Li, D. Q. Fang, Y. G. Ma, Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for B, C, N, O, F isotopes. Nucl. Sci. Tech. 27, 71 (2016). doi: 10.1007/s41365-016-0064-zhttp://doi.org/10.1007/s41365-016-0064-z
M. Arnould, S. Goriely, Astronuclear Physics: A tale of the atomic nuclei in the skies. Prog. Part. Nucl. Phys. 112, 103766 (2020). doi: 10.1016/j.ppnp.2020.103766http://doi.org/10.1016/j.ppnp.2020.103766
C. Li, P. W. Wen, J. J. Li et al., Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. Nucl. Sci. Tech. 28, 110 (2017). doi: 10.1007/s41365-017-0266-zhttp://doi.org/10.1007/s41365-017-0266-z
P. Danielewicz, R. Lacey, W. G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592-1596 (2002). doi: 10.1126/science.1078070http://doi.org/10.1126/science.1078070
V. Baran, M. Colonna, V. Greco et al., Reaction dynamics with exotic nuclei. Phys. Rep. 410, 335-466 (2005). doi: 10.1016/j.physrep.2004.12.004http://doi.org/10.1016/j.physrep.2004.12.004
D. V. Shetty, S. J. Yennello, G. A. Souliotis, Density dependence of the symmetry energy and the nuclear equation of state: A dynamical and statistical model perspective. Phys. Rev. C 76, 024606 (2007). doi: 10.1103/PhysRevC.76.024606http://doi.org/10.1103/PhysRevC.76.024606
B. A. Li, L. W. Chen, C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113-281 (2008). https://www.sciencedirect.com/science/article/pii/S037015730800126910.1016/j.physrep.2008.04.005https://www.sciencedirect.com/science/article/pii/S037015730800126910.1016/j.physrep.2008.04.005
J. M. Lattimer, M. Prakash, Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 442, 109-165 (2007). doi: 10.1016/j.physrep.2007.02.003http://doi.org/10.1016/j.physrep.2007.02.003
H. Yu, D. Q. Fang, Y. G. Ma, Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). doi: 10.1007/s41365-020-00766-xhttp://doi.org/10.1007/s41365-020-00766-x
M. Thoennessen, The Discovery of Isotopes. (Springer, Cham, 2016). doi: 10.1007/978-3-319-31763-2http://doi.org/10.1007/978-3-319-31763-2
D. S. Ahn, N. Fukuda, H. Geissel et al., Location of the neutron dripline at Fluorine and Neon. Phys. Rev. Lett. 123, 212501 (2019). doi: 10.1103/PhysRevLett.123.212501http://doi.org/10.1103/PhysRevLett.123.212501
K. Wimmer, P. Doornenbal, W. Korten et al., Discovery of 68Br in secondary reactions of radioactive beams. Phys. Lett. B 795, 266-270 (2019). doi: 10.1016/j.physletb.2019.06.014http://doi.org/10.1016/j.physletb.2019.06.014
H. Suzuki, L. Sinclair, P. A. Söderström et al., Discovery of 72Rb: A nuclear sandbank beyond the proton drip line. Phys. Rev. Lett. 119, 192503 (2017). doi: 10.1103/PhysRevLett.119.192503http://doi.org/10.1103/PhysRevLett.119.192503
K. Riisager, Halos and related structures. Phys. Scr. T152, 014001 (2013). doi: 10.1088/0031-8949/2013/t152/014001http://doi.org/10.1088/0031-8949/2013/t152/014001
R. Kanungo, A new view of nuclear shells. Phys. Scr. T152, 014002 (2013). doi: 10.1088/0031-8949/2013/t152/014002http://doi.org/10.1088/0031-8949/2013/t152/014002
H. Geissel, P. Armbruster, K. Behr et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods B, 70, 286-297 (1992). doi: 10.1016/0168-583X(92)95944-Mhttp://doi.org/10.1016/0168-583X(92)95944-M
H. Geissel, K. Beckert, F. Bosch et al., First storage and cooling of secondary heavy-ion beams at relativistic energies. Phys. Rev. Lett. 68, 3412-3415 (1992). doi: 10.1103/PhysRevLett.68.3412http://doi.org/10.1103/PhysRevLett.68.3412
H. L. Ravn, Experiments with intense secondary beams of radioactive ions. Phys. Rep., 54, 201-259 (1979). doi: 10.1016/0370-1573(79)90045-0http://doi.org/10.1016/0370-1573(79)90045-0
S. Galès, Towards the next generation of radioactive ion beam facilities. Nucl. Phys. A 722, C148-C156 (2003). doi: 10.1016/S0375-9474(03)01351-4http://doi.org/10.1016/S0375-9474(03)01351-4
T. J. M. Symons, Y. P. Viyogi, G. D. Westfall et al., Observation of new neutron-rich isotopes by fragmentation of 205-MeV/nucleon 40Ar ions. Phys. Rev. Lett. 42, 40-43 (1979). doi: 10.1103/PhysRevLett.42.40http://doi.org/10.1103/PhysRevLett.42.40
H. Imal, R. Ogul, Theoretical study of isotope production in the peripheral heavy-ion collision 136Xe+Pb at 1 GeV/nucleon. Nucl. Phys. A 1014, 122261 (2021). doi: 10.1016/j.nuclphysa.2021.122261http://doi.org/10.1016/j.nuclphysa.2021.122261
F. F. Duan, Y. Y. Yang, B. T. Hu et al., Silicon detector array for radioactive beam experiments at HIRFL-RIBLL. Nucl. Sci. Tech. 29, 165 (2018). doi: 10.1007/s41365-018-0499-5http://doi.org/10.1007/s41365-018-0499-5
Z. Y. Sun, W. L. Zhan, Z. Y. Guo et al., Separation and Identification of Isotopes Produced from 20Ne+Be Reaction by Radioactive Ion Beam Line in Lanzhou. Chin. Phys. Lett. 15, 790-792 (1998). doi: 10.1088/0256-307X/15/11/004http://doi.org/10.1088/0256-307X/15/11/004
S. Lukyanov, M. Mocko, L. Andronenko et al., Projectile fragmentation of radioactive beams of 68Ni, 69Cu, and 72Zn. Phys. Rev. C, 80, 014609 (2009). doi: 10.1103/PhysRevC.80.014609http://doi.org/10.1103/PhysRevC.80.014609
R. J. Charity, T. B. Webb, J. M. Elson et al., Observation of the exotic isotope 13F located four neutrons beyond the proton drip line. Phys. Rev. Lett. 126, 132501 (2021). doi: 10.1103/PhysRevLett.126.132501http://doi.org/10.1103/PhysRevLett.126.132501
T. Sumikama, N. Fukuda, N. Inabe et al., Observation of new neutron-rich isotopes in the vicinity of 110Zr. Phys. Rev. C 103, 014614 (2021). doi: 10.1103/PhysRevC.103.014614http://doi.org/10.1103/PhysRevC.103.014614
K. Wang, Y. Y. Yang, A. M. Moro et al., Elastic scattering and breakup reactions of the proton drip-line nucleus 8B on 208Pb at 238 MeV. Phys. Rev. C 103, 024606 (2021). doi: 10.1103/PhysRevC.103.024606http://doi.org/10.1103/PhysRevC.103.024606
G. G. Adamian, N. V. Antonenko, A. Diaz-Torres et al., How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020). doi: 10.1140/epja/s10050-020-00046-7http://doi.org/10.1140/epja/s10050-020-00046-7
D. Q. Fang, W. Q. Shen, J. Feng et al., Measurements of total reaction cross sections for exotic nuclei close to the proton drip-line at intermediate energies and observation of a proton halo in 27P. Chin. Phys. Lett. 18, 1033-1036 (2001). doi: 10.1088/0256-307X/18/8/312http://doi.org/10.1088/0256-307X/18/8/312
C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). doi: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
H. Geissel, G. Munzenberg, K. Riisager, Secondary exotic nuclear beams. Annu. Rev. Nucl. Part. Sci., 45, 163-203 (1995). doi: 10.1146/annurev.ns.45.120195.001115http://doi.org/10.1146/annurev.ns.45.120195.001115
Y. Blumenfeld, T. Nilsson, P. Van Duppen, Facilities and methods for radioactive ion beam production. Phys. Scr. T152, 014023 (2013). doi: 10.1088/0031-8949/2013/t152/014023http://doi.org/10.1088/0031-8949/2013/t152/014023
A. M. Poskanzer, G. Butler, E. Hyde et al., Observation of the new isotope 17C using a combined time-of-flight particle-identification technique. Phys. Lett. B 27, 414-416 (1968). doi: 10.1016/0370-2693(68)90222-0http://doi.org/10.1016/0370-2693(68)90222-0
A. M. Poskanzer, S. W. Cosper, E. K. Hyde et al., New Isotopes: 11Li, 14B, and 15B. Phys. Rev. Lett. 17, 1271-1274 (1966). doi: 10.1103/PhysRevLett.17.1271http://doi.org/10.1103/PhysRevLett.17.1271
J. C. David, Spallation reactions: A successful interplay between modeling and applications. Eur. Phys. J. A 51, 68 (2015). doi: 10.1140/epja/i2015-15068-1http://doi.org/10.1140/epja/i2015-15068-1
H. Alvarez-Pol, J. Benlliure, E. Casarejos et al., Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of 238U projectiles at 1A GeV. Phys. Rev. C 82, 041602 (2010). doi: 10.1103/PhysRevC.82.041602http://doi.org/10.1103/PhysRevC.82.041602
N. Vonta, G. A. Souliotis, W. Loveland et al., Neutron-rich rare-isotope production from projectile fission of heavy nuclei near 20 MeV/nucleon beam energy. Phys. Rev. C 94, 064611 (2016). doi: 10.1103/PhysRevC.94.064611http://doi.org/10.1103/PhysRevC.94.064611
J. Kurcewicz, F. Farinon, H. Geissel et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371-375 (2012). doi: 10.1016/j.physletb.2012.09.021http://doi.org/10.1016/j.physletb.2012.09.021
O. B. Tarasov, M. Portillo, A. M. Amthor et al., Production of very neutron-rich nuclei with a 76Ge beam. Phys. Rev. C 80, 034609 (2009). doi: 10.1103/PhysRevC.80.034609http://doi.org/10.1103/PhysRevC.80.034609
T. Kurtukian-Nieto, J. Benlliure, K. H. Schmidt et al., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A=195. Phys. Rev. C 89, 024616 (2014). doi: 10.1103/PhysRevC.89.024616http://doi.org/10.1103/PhysRevC.89.024616
Z. Meisel, S. George, S. Ahn et al., Time-of-flight mass measurements of neutron-rich chromium isotopes up to N=40 and implications for the accreted neutron star crust. Phys. Rev. C 93, 035805 (2016). doi: 10.1103/PhysRevC.93.035805http://doi.org/10.1103/PhysRevC.93.035805
C. Santamaria, C. Louchart, A. Obertelli et al., Extension of the N=40 island of inversion towards N=50: Spectroscopy of 66Cr, 70,72Fe. Phys. Rev. Lett. 115, 192501 (2015). doi: 10.1103/PhysRevLett.115.192501http://doi.org/10.1103/PhysRevLett.115.192501
R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt et al., First measurement of several β-delayed neutron emitting isotopes beyond N=126. Phys. Rev. Lett. 117, 012501 (2016). doi: 10.1103/PhysRevLett.117.012501http://doi.org/10.1103/PhysRevLett.117.012501
K. Palli, G. A. Souliotis, T. Depastas et al., Microscopic dynamical description of multinucleon transfer in 40Ar induced peripheral collisions at 15 MeV/nucleon. EPJ Web Conf. 252, 07002 (2021). doi: 10.1051/epjconf/202125207002http://doi.org/10.1051/epjconf/202125207002
A. Papageorgiou, G. A. Souliotis, K. Tshoo et al., Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ∼ 40-60 at beam energy around 15 MeV/nucleon. J. Phys. G 45, 095105 (2018). doi: 10.1088/1361-6471/aad7dfhttp://doi.org/10.1088/1361-6471/aad7df
G. A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in peripheral collisions at Fermi energies. Phys. Rev. Lett. 91, 022701 (2003). doi: 10.1103/PhysRevLett.91.022701http://doi.org/10.1103/PhysRevLett.91.022701
G. A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in the reaction of 25 MeV/nucleon 86Kr on 64Ni. Phys. Lett. B 543, 163-172 (2002). doi: 10.1016/S0370-2693(02)02459-0http://doi.org/10.1016/S0370-2693(02)02459-0
R. Ogul, N. Buyukcizmeci, A. Ergun et al., Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies. Nucl. Sci. Tech. 28, 18 (2016). doi: 10.1007/s41365-016-0175-6http://doi.org/10.1007/s41365-016-0175-6
R. Thies, A. Heinz, T. Adachi et al., Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes. Phys. Rev. C 93, 054601 (2016). doi: 10.1103/PhysRevC.93.054601http://doi.org/10.1103/PhysRevC.93.054601
G. F. Bertsch, H. Kruse, S. D. Gupta, Boltzmann equation for heavy ion collisions. Phys. Rev. C 29, 673-675 (1984). doi: 10.1103/PhysRevC.29.673http://doi.org/10.1103/PhysRevC.29.673
G. F. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189-233 (1988). doi: 10.1016/0370-1573(88)90170-6http://doi.org/10.1016/0370-1573(88)90170-6
O. Buss, T. Gaitanos, K. Gallmeister et al., Transport-theoretical description of nuclear reactions. Phys. Rep. 512, 1-124 (2012). doi: 10.1016/j.physrep.2011.12.001http://doi.org/10.1016/j.physrep.2011.12.001
J. Aichelin, “Quantum” molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233-360 (1991). doi: 10.1016/0370-1573(91)90094-3http://doi.org/10.1016/0370-1573(91)90094-3
G. Tian, R. Wada, Z. Chen et al., Nuclear stopping and light charged particle emission in 12C+12C at 95 MeV/nucleon. Phys. Rev. C 95, 044613 (2017). doi: 10.1103/PhysRevC.95.044613http://doi.org/10.1103/PhysRevC.95.044613
J. Su, L. Zhu, C. C. Guo et al., Uniform description of breakup mechanisms in central collision, projectile fragmentation, and proton-induced spallation. Phys. Rev. C 100, 014602 (2019). doi: 10.1103/PhysRevC.100.014602http://doi.org/10.1103/PhysRevC.100.014602
Z. Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). doi: 10.1007/s41365-018-0379-zhttp://doi.org/10.1007/s41365-018-0379-z
C. W. Ma, C. Y. Qiao, T. T. Ding et al., Temperature of intermediate mass fragments in simulated 40Ca+40Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). doi: 10.1007/s41365-016-0112-8http://doi.org/10.1007/s41365-016-0112-8
A. Guarnera, M. Colonna, P. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei. Phys. Lett. B 373, 267-274 (1996). doi: 10.1016/0370-2693(96)00152-9http://doi.org/10.1016/0370-2693(96)00152-9
M. Colonna, M. Di Toro, A. Guarnera et al., Fluctuations and dynamical instabilities in heavy-ion reactions. Nucl. Phys. A 642, 449-460 (1998). doi: 10.1016/S0375-9474(98)00542-9http://doi.org/10.1016/S0375-9474(98)00542-9
J. J. Gaimard, K. H. Schmidt, A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531, 709-745 (1991). doi: 10.1016/0375-9474(91)90748-Uhttp://doi.org/10.1016/0375-9474(91)90748-U
C. W. Ma, H. L. Wei, J. Y. Wang et al., Isospin dependence of projectile-like fragment production at intermediate energies. Phys. Rev. C 79, 034606 (2009). doi: 10.1103/PhysRevC.79.034606http://doi.org/10.1103/PhysRevC.79.034606
D. Q. Fang, W. Q. Shen, J. Feng et al., Isospin effect of fragmentation reactions induced by intermediate energy heavy ions and its disappearance. Phys. Rev. C 61, 044610 (2000). doi: 10.1103/PhysRevC.61.044610http://doi.org/10.1103/PhysRevC.61.044610
K. Sümmerer, Erratum: Improved empirical parametrization of fragmentation cross sections [Phys. Rev. C 86, 014601 (2012)]. Phys. Rev. C 87, 039903 (2013). doi: 10.1103/PhysRevC.87.039903http://doi.org/10.1103/PhysRevC.87.039903
K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). doi: 10.1103/PhysRevC.86.014601http://doi.org/10.1103/PhysRevC.86.014601
K. Sümmerer, B. Blank, Modified empirical parametrization of fragmentation cross sections. Phys. Rev. C 61, 034607 (2000). doi: 10.1103/PhysRevC.61.034607http://doi.org/10.1103/PhysRevC.61.034607
G. Rudstam, Systematics of spallation yields. Z. Naturforsch. Teil A 21, 1027-1041 (1966). doi: 10.1515/zna-1966-0724http://doi.org/10.1515/zna-1966-0724
B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). doi: 10.1103/PhysRevC.95.034608http://doi.org/10.1103/PhysRevC.95.034608
Y. D. Song, H. L. Wei, C. W. Ma et al., Improved fracs parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018). doi: 10.1007/s41365-018-0439-4http://doi.org/10.1007/s41365-018-0439-4
H. Wolter, M. Colonna, D. Cozma et al., Transport model comparison studies of intermediate-energy heavy-ion collisions (2022). arXiv: 2202.06672 [nucl-th]
C. W. Ma, Y. L. Zhang, S. S. Wang et al., A model comparison study of fragment production in 140 A MeV 58,64Ni+9Be reactions. Chin. Phys. Lett. 32, 072501 (2015). doi: 10.1088/0256-307X/32/7/072501http://doi.org/10.1088/0256-307X/32/7/072501
Y. X. Zhang, N. Wang, Q. F. Li et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). doi: 10.1007/s11467-020-0961-9http://doi.org/10.1007/s11467-020-0961-9
M. Colonna, Collision dynamics at medium and relativistic energies. Prog. Part. Nucl. Phys. 113, 103775 (2020). doi: 10.1016/j.ppnp.2020.103775http://doi.org/10.1016/j.ppnp.2020.103775
J. Xu, Transport approaches for the description of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 106, 312-359 (2019). doi: 10.1016/j.ppnp.2019.02.009http://doi.org/10.1016/j.ppnp.2019.02.009
A. Ono, Dynamics of clusters and fragments in heavy-ion collisions. Prog. Part. Nucl. Phys. 105, 139-179 (2019). doi: 10.1016/j.ppnp.2018.11.001http://doi.org/10.1016/j.ppnp.2018.11.001
C. W. Ma, Y. G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120-158 (2018). doi: 10.1016/j.ppnp.2018.01.002http://doi.org/10.1016/j.ppnp.2018.01.002
C. W. Ma, H. L. Wei, X. Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). doi: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
Y. Abe, S. Ayik, P. G. Reinhard et al., On stochastic approaches of nuclear dynamics. Phys. Rep. 275, 49-196 (1996). doi: 10.1016/0370-1573(96)00003-8http://doi.org/10.1016/0370-1573(96)00003-8
F. S. Zhang, E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation. Phys. Lett. B 319, 35-40 (1993). doi: 10.1016/0370-2693(93)90777-Fhttp://doi.org/10.1016/0370-2693(93)90777-F
F. S. Zhang, E. Suraud, Analysis of multifragmentation in a Boltzmann-Langevin approach. Phys. Rev. C 51, 3201 (1995). doi: 10.1103/PhysRevC.51.3201http://doi.org/10.1103/PhysRevC.51.3201
S. Ayik, C. Grégoire, Fluctuations of single-particle density in nuclear collisions. Phys. Lett. B 212, 269-272 (1988). doi: 10.1016/0370-2693(88)91315-9http://doi.org/10.1016/0370-2693(88)91315-9
W. Bauer, G. F. Bertsch, S. Das Gupta, Fluctuations and clustering in heavy-ion collisions. Phys. Rev. Lett. 58, 863-866 (1987). doi: 10.1103/PhysRevLett.58.863http://doi.org/10.1103/PhysRevLett.58.863
P. Chomaz, G. Burgio, J. Randrup, Inclusion of fluctuations in nuclear dynamics. Phys. Lett. B 254, 340-346 (1991). doi: 10.1016/0370-2693(91)91166-Shttp://doi.org/10.1016/0370-2693(91)91166-S
E. Suraud, S. Ayik, M. Belkacem et al., Applications of Boltzmann-Langevin equation to nuclear collisions. Nucl. Phys. A 542, 141-158 (1992). doi: 10.1016/0375-9474(92)90403-7http://doi.org/10.1016/0375-9474(92)90403-7
J. Randrup, B. Remaud, Fluctuations in one-body dynamics. Nucl. Phys. A 514, 339-366 (1990). doi: 10.1016/0375-9474(90)90075-Whttp://doi.org/10.1016/0375-9474(90)90075-W
W. J. Xie, J. Su, L. Zhu et al., Symmetry energy and pion production in the Boltzmann-Langevin approach. Phys. Lett. B 718, 1510-1514 (2013). doi: 10.1016/j.physletb.2012.12.021http://doi.org/10.1016/j.physletb.2012.12.021
B. Li, N. Tang, F. S. Zhang, Isospin effects of projectile fragmentation in a Boltzmann-Langevin approach. Chin. Phys. C 45, 084103 (2021). doi: 10.1088/1674-1137/ac009ahttp://doi.org/10.1088/1674-1137/ac009a
B. A. Bian, F. S. Zhang, H. Y. Zhou, Fragmentation cross sections of 20Ne collisions with different targets at 600 MeV/nucleon. Nucl. Phys. A 807, 71-78 (2008). doi: 10.1016/j.nuclphysa.2008.03.014http://doi.org/10.1016/j.nuclphysa.2008.03.014
K. Chen, Z. Fraenkel, G. Friedlander et al., VEGAS: A monte carlo simulation of intranuclear cascades. Phys. Rev. 166, 949-967 (1968). doi: 10.1103/PhysRev.166.949http://doi.org/10.1103/PhysRev.166.949
S. Huber, J. Aichelin, Production of Δ- and N*-resonances in the one-boson exchange model. Nucl. Phys. A 573, 587-625 (1994). doi: 10.1016/0375-9474(94)90232-1http://doi.org/10.1016/0375-9474(94)90232-1
J. Cugnon, D. L’Hôte, J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range. Nucl. Instr. Meth. B 111, 215-220 (1996). doi: 10.1016/0168-583X(95)01384-9http://doi.org/10.1016/0168-583X(95)01384-9
Y. D. Song, H. L. Wei, C. W. Ma, Fragmentation binding energies and cross sections of isotopes near the proton dripline. Phys. Rev. C 98, 024620 (2018). doi: 10.1103/PhysRevC.98.024620http://doi.org/10.1103/PhysRevC.98.024620
C. W. Ma, Y. D. Song, H. L. Wei, Binding energies of near proton-drip line Z = 22-28 isotopes determined from measured isotopic cross section distributions. Sci. China-Phys. Mech. Astron. 62, 012013 (2019). doi: 10.1007/s11433-018-9256-8http://doi.org/10.1007/s11433-018-9256-8
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution