1.School of Physical Science and Technology, Guangxi University, Nanning 530004, China
2.Institute of High Energy Physics, Beijing 100049, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Yong-Bo Huang, huangyb@gxu.edu.cn
Ji-Lei Xu, xujl@ihep.ac.cn
Scan for full text
Cheng-Feng Yang, Yong-Bo Huang, Ji-Lei Xu, et al. Reconstruction of a muon bundle in the JUNO central detector. [J]. Nuclear Science and Techniques 33(5):59(2022)
Cheng-Feng Yang, Yong-Bo Huang, Ji-Lei Xu, et al. Reconstruction of a muon bundle in the JUNO central detector. [J]. Nuclear Science and Techniques 33(5):59(2022) DOI: 10.1007/s41365-022-01049-3.
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment. One of the main goals is to determine the neutrino mass ordering by precisely measuring the energy spectrum of reactor antineutrinos. For the detection of reactor antineutrinos, cosmogenic backgrounds, such as ,9,Li/,8,He and fast neutrons induced by cosmic muons, should be rejected carefully by applying muon veto cuts, which require good muon track reconstruction. With a 20-kton liquid scintillator detector, the simulation shows the proportion of muon bundles (muon multiplicity ,≥,2) to be approximately 8% in JUNO, whereas its reconstruction has been rarely discussed in previous experiments. This study proposes an efficient algorithm for muon track reconstruction based on the charge response of a photomultiplier tube array. This is the first reconstruction of muon bundles in a large-volume liquid scintillator detector. In addition, the algorithm shows good performance and potential for reconstruction for both a single muon and double muons (muon multiplicity = 2). The spatial resolution of a single-muon reconstruction was 20 cm, and the angular resolution was 0.5°. For double-muon reconstruction, the spatial and angular resolutions could be 30 cm and 1.0°, respectively. Moreover, this paper also discusses muon classification and the veto strategy.
JUNOLiquid scintillator detectorMuon reconstructionMuon bundleVeto strategy
F.P. An, J.Z. Bai, A.B. Balantekin et al., Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). doi: 10.1103/PhysRevLett.108.171803http://doi.org/10.1103/PhysRevLett.108.171803
G. Bellini, J. Benziger, D. Bick et al., Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth. JCAP 08, 049 (2013). doi: 10.1088/1475-7516/2013/08/049http://doi.org/10.1088/1475-7516/2013/08/049
F.P. An, G.P An, Q. An et al., Neutrino Physics with JUNO. J. Phys. G 43, no.3, 030401 (2016). doi: 10.1088/0954-3899/43/3/030401http://doi.org/10.1088/0954-3899/43/3/030401
S. Locke, A. Coffani, K. Abe et al., New Methods and Simulations for Cosmogenic Induced Spallation Removal in Super-Kamiokande-IV. doi: 10.48550/arXiv.2112.00092http://doi.org/10.48550/arXiv.2112.00092
D. Mei, A. Hime, Muon-induced background study for underground laboratories. Phys. Rev. D 73, 053004 (2006). doi: 10.1103/PhysRevD.73.053004http://doi.org/10.1103/PhysRevD.73.053004
Y.C. Wu, X.Q. Hao, Q. Yue et al., Measurement of Cosmic Ray Flux in China JinPing underground Laboratory. Chin. Phys. C 37, no.8, 086001 (2013). doi: 10.1088/1674-1137/37/1/016001http://doi.org/10.1088/1674-1137/37/1/016001
P. Agnes, L. Agostino, I. F. M. Albuquerque et al., The veto system of the DarkSide-50 experiment. JINST 11, no.03, P03016 (2016). doi: 10.1088/1748-0221/11/03/p03016http://doi.org/10.1088/1748-0221/11/03/p03016
D.S. Akerib, R. Rosero, M. Yeh et al., LUX-ZEPLIN (LZ) Conceptual Design Report. doi: 10.48550/arXiv.1509.02910http://doi.org/10.48550/arXiv.1509.02910
Y.L. Yan, W.X. Zhong, S.T. Lin et al., Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. Nucl. Sci. Tech. 31, 55 (2020). doi: 10.1007/s41365-020-00762-1http://doi.org/10.1007/s41365-020-00762-1
A. Abusleme et al., JUNO Physics and Detector. Prog. Part. Nucl. Phys. 123, 103927 (2022). doi: 10.1016/j.ppnp.2021.103927http://doi.org/10.1016/j.ppnp.2021.103927
Y.P. Zhang, C.G. Yang. From Daya Bay experiment to Jiangmen Underground Neutrino Observatory experiment. Sci Sin-Phys Mech Astron, 2021, 51: 092002. doi: 10.1360/SSPMA-2021-0088http://doi.org/10.1360/SSPMA-2021-0088 (in Chinese)
T. Li, X. Xia, X.T. Huang et al., Design and Development of JUNO Event Data Model. Chin. Phys. C 41, no.6, 066201 (2017). doi: 10.1088/1674-1137/41/6/066201http://doi.org/10.1088/1674-1137/41/6/066201
K.J. Li, Z.Y. You, Y.M. Zhang et al., GDML based geometry management system for offline software in JUNO. Nucl. Instrum. Meth. A 908, 43-48 (2018). doi: 10.1016/j.nima.2018.08.008http://doi.org/10.1016/j.nima.2018.08.008
T.K. Gaisser, T. Stanev, Muon bundles in underground detectors. Nucl. Instrum. Meth. A 235, 183-192 (1985). doi: 10.1016/0168-9002(85)90260-8http://doi.org/10.1016/0168-9002(85)90260-8
E. Scapparone, Study of muon bundles observed by the MACRO underground experiment. Nucl. Phys. B Proc. Suppl. 52, 179-181 (1997). doi: 10.1016/S0920-5632(96)00875-4http://doi.org/10.1016/S0920-5632(96)00875-4
M. Grassi, J. Evslin, E. Ciuffoli et al., Showering Cosmogenic Muons in A Large Liquid Scintillator. JHEP 09, 049 (2014). doi: 10.1007/JHEP09(2014)049http://doi.org/10.1007/JHEP09(2014)049
R.P. Kokoulin, N.S. Barbashina, A.G. Bogdanov et al., Measuring the Cherenkov light yield from cosmic ray muon bundles in the water detector. Nucl. Instrum. Meth. A 952, 161586 (2020). doi: 10.1016/j.nima.2018.11.045http://doi.org/10.1016/j.nima.2018.11.045
E.A. Yurina, N.S. Barbashina, A.G. Bogdanov et al., Status of the NEVOD–DECOR Experiment on the Study of Muon Bundles Energy Deposit. Bull. Russ. Acad. Sci. Phys. 85, no.4, 455-457 (2021). doi: 10.3103/S1062873821040390http://doi.org/10.3103/S1062873821040390
J.A. Aguilar, I. Al Samarai, A. Albert et al., A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astropart. Phys. 34, 652-662 (2011). doi: 10.1016/j.astropartphys.2011.01.003http://doi.org/10.1016/j.astropartphys.2011.01.003
A. Stoessl, Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2. PoS ICRC2017, 1038 (2018). doi: 10.22323/1.301.1038http://doi.org/10.22323/1.301.1038
V.A. Allakhverdyan, A. D. Avrorin, A. V. Avrorin et al., Measuring muon tracks in Baikal-GVD using a fast reconstruction algorithm. Eur. Phys. J. C 81, no.11, 1025 (2021). doi: 10.1140/epjc/s10052-021-09825-yhttp://doi.org/10.1140/epjc/s10052-021-09825-y
G. Bellini, J Benziger, D Bick et al., Muon and Cosmogenic Neutron Detection in Borexino. JINST 6, P05005 (2011). doi: 10.1088/1748-0221/6/05/P05005http://doi.org/10.1088/1748-0221/6/05/P05005
Y. Abe, J.C. dos Anjos, J.C. Barriere et al., Precision Muon Reconstruction in Double Chooz. Nucl. Instrum. Meth. A 764, 330-339 (2014). doi: 10.1016/j.nima.2014.07.058http://doi.org/10.1016/j.nima.2014.07.058
Zoa Conner, A study of solar neutrinos using the Super-Kamiokande detector, Dissertation (UNIVERSITY OF MARYLAND COLLEGE PARK, 1997).
V.A. Allakhverdyan, A.D. Avrorin, A.V. Avrorin et al., Technique for suppression of background cascades produced by atmospheric muon bundles in the Baikal-GVD. JINST 17, no.02, C02013 (2022). doi: 10.1088/1748-0221/17/02/c02013http://doi.org/10.1088/1748-0221/17/02/c02013
S. Reck T. Eberl, U. Katz, Muon bundle reconstruction with KM3NeT/ORCA using graph convolutional networks. PoS ICRC2021, 1048 (2021). doi: 10.22323/1.395.1048http://doi.org/10.22323/1.395.1048
C. Genster, M. Schever, L. Ludhova et al., Muon reconstruction with a geometrical model in JUNO. JINST 13, no.03, T03003 (2018). doi: 10.1088/1748-0221/13/03/T03003http://doi.org/10.1088/1748-0221/13/03/T03003
K. Zhang, M. He, W.D. Li et al., Muon Tracking with the fastest light in the JUNO Central Detector. Radiation Detection Technology and Methods 2.1(2018). doi: 10.1007/s41605-018-0040-8http://doi.org/10.1007/s41605-018-0040-8
Z.Y. Li, Y.M. Zhang, G.F. Cao et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors. Nucl. Sci. Tech. 32, 49 (2021). doi: 10.1007/s41365-021-00885-zhttp://doi.org/10.1007/s41365-021-00885-z
Y. Liu, W.D. Li, T. Lin et al., Muon reconstruction with a convolutional neural network in the JUNO detector. Radiat Detect Technol Methods 5, 364-372 (2021). doi: 10.1007/s41605-021-00259-4http://doi.org/10.1007/s41605-021-00259-4
M. Wurm, Studying neutrino properties in the future LENA experiment. Nucl. Phys. B Proc. Suppl. 237-238, 314-316 (2013). doi: 10.1016/j.nuclphysbps.2013.04.114http://doi.org/10.1016/j.nuclphysbps.2013.04.114
S. Zhang, J.S. Li, Y.J. Su et al., A method for sharing dynamic geometry information in studies on liquid-based detectors. Nucl. Sci. Tech. 32, 21 (2021). doi: 10.1007/s41365-021-00852-8http://doi.org/10.1007/s41365-021-00852-8
CERN ROOT. An open-source data analysis framework, https://root.cern.chhttps://root.cern.chhttps://root.cern.chhttps://root.cern.ch; 2022 [accessed 15 March 2022].
CERN ROOT. An open-source data analysis framework, https://root.cern.ch/root/html526/TSpectrum2.htmlhttps://root.cern.ch/root/html526/TSpectrum2.html; 2022 [accessed 15 March 2022].
M. Morháč, J. Kliman, V. Matoušek et al., Identification of peaks in multidimensional coincidence γ-ray spectra. Nuclear Inst. and Methods in Physics Research, A,2000,443(1). doi: 10.1016/S0168-9002(99)01005-0http://doi.org/10.1016/S0168-9002(99)01005-0
A. Abusleme, T. Adam, S. Ahmad et al., Feasibility and physics potential of detecting 8B solar neutrinos at JUNO. Chin. Phys. C 45, no.2, 023004 (2021). doi: 10.1088/1674-1137/abd92ahttp://doi.org/10.1088/1674-1137/abd92a
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution