1.China Institute of Atomic Energy, P. O. Box 275(18), Beijing 102413, China
2.Department of Physics and Technology, Guangxi normal University, Guilin 540101, China
zhyx@ciae.ac.cn
Scan for full text
Li Li, Fang-Yuan Wang, Ying-Xun Zhang. Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. [J]. Nuclear Science and Techniques 33(5):58(2022)
Li Li, Fang-Yuan Wang, Ying-Xun Zhang. Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. [J]. Nuclear Science and Techniques 33(5):58(2022) DOI: 10.1007/s41365-022-01050-w.
In this study, we investigated the isospin properties of intermediate mass fragments (IMFs) for the central collisions of ,112,124,Sn+,112,124,Sn at a beam energy of 50 MeV per nucleon using an improved quantum molecular dynamics model (ImQMD) coupled with a sequential decay model (GEMINI). Three observables were analyzed: 1) the average center-of-mass kinetic energy per nucleon ,, of fragments as a function of their charge number ,Z,; 2) the average neutron number to proton number ratio (,,) of fragments with a given charge number ,Z, as a function of their center-of-mass kinetic energy per nucleon (,E,c.m.,/,A,); and 3) the average total neutron number to total proton number ratio (,,) and double ratio (,DR,(,N/Z,)) of IMFs with ,Z,=3-8 as a function of their center-of-mass kinetic energy per nucleon ,E,c.m.,/,A,. Our calculations revealed that the sensitivity of the isospin properties of IMFs relative to the stiffness of the symmetry energy remains even after sequential decay. By comparing the calculations of ,, and ,DR,(,N/Z,) with the data, it was found that the soft symmetry energy, i.e.,γ,=0.5, is favored.
Symmetry energyIntermediate mass fragmentsIsospin effects
Bao-An Li, Lie-Wen Chen, Che Ming Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions.Phys. Rep. 464, 113 (2008). doi: 10.1016/j.physrep.2008.04.005http://doi.org/10.1016/j.physrep.2008.04.005
M. B. Tsang, J. R. Stone, F. Camera, et.al., Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 86, 015803 (2012). doi: 10.1103/PhysRevC.86.015803http://doi.org/10.1103/PhysRevC.86.015803
P. Danielewicz, Flow and the equation of state of nuclear matter. Nucl. Phys. A 685, 368c (2001). doi: 10.1016/S0375-9474(01)00554-1http://doi.org/10.1016/S0375-9474(01)00554-1
Lie-Wen Chen, Che Ming Ko, and Bao-An Li, High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevC.72.064606http://doi.org/10.1103/PhysRevC.72.064606
M. B. Tsang, Yingxun Zhang, P. Danielewicz, et. al., Constraints on the Density Dependence of the Symmetry Energy. Phys. Rev. Lett. 102, 122701 (2009). doi: 10.1103/PhysRevLett.102.122701http://doi.org/10.1103/PhysRevLett.102.122701
M. Colonna, V. Banran, M. Di Toro, et. al., Isospin distillation with radial flow: A test of the nuclear symmetry energy. Phys. Rev. C 78,064618 (2008). doi: 10.1103/PhysRevC.78.064618http://doi.org/10.1103/PhysRevC.78.064618
Z.G. Xiao, R.J. Hu, H.Y. Wu, et. al., System dependence of the correlation function of IMFs in 36Ar +112,124Sn at 35 MeV/u. Phys. Lett. B 639, 436(2006). doi: 10.1016/j.physletb.2006.06.076http://doi.org/10.1016/j.physletb.2006.06.076
E.W. Cornell, T.M. Hamilton, D. Fox, et.al., Investigating the Evolution of Multifragmenting Systems with Fragment Emission Order. Phys. Rev. Lett. 77, 4508 (1996). doi: 10.1103/PhysRevLett.77.4508http://doi.org/10.1103/PhysRevLett.77.4508
E. Galichet, M. F. Rivet, B. Borderie, et. al., Isospin diffusion in 58Ni-induced reactions at intermediate energies. I. Experimental resultsPhys. Rev. C 79, 064616 (2009). doi: 10.1103/PhysRevC.79.064614http://doi.org/10.1103/PhysRevC.79.064614
T. X. Liu, W. G. Lynch, M. B. Tsang, et. al., Isospin diffusion observables in heavy-ion reactions. Phys. Rev. C 76, 034603 (2007). doi: 10.1103/PhysRevC.76.034603http://doi.org/10.1103/PhysRevC.76.034603
Yan Zhang, Junlong Tian, Wenjing Cheng, et. al., Long-time drift of the isospin degree of freedom in heavy ion collisions. Phys. Rev. C 95, 387 041602(R) (2017). doi: 10.1103/PhysRevC.95.041602http://doi.org/10.1103/PhysRevC.95.041602
Yangyang Liu, Yongjia Wang, Ying Cui, et. al., Insights into the pion production mechanism and the symmetry energy at high density. Phys. Rev. C 103, 014616 (2021). doi: 10.1103/PhysRevC.103.014616http://doi.org/10.1103/PhysRevC.103.014616
J. Estee et al. (SπRIT Collaboration), Probing the Symmetry Energy with the Spectral Pion Ratio. Phys. Rev. Lett. 126, 162701. doi: 10.1103/PhysRevLett.126.162701http://doi.org/10.1103/PhysRevLett.126.162701
Yingxun Zhang, Min Liu, Cheng-Jun Xia, et. al., Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 101, 034303 (2020). doi: 10.1103/PhysRevC.101.034303http://doi.org/10.1103/PhysRevC.101.034303
Bing Li, Na Tang, Feng-Shou Zhang, Isospin effects of projectile fragmentation in a Boltzmann-Langevin approach. Chin. Phys. C Vol. 45, 394 No. 8 084103(2021). doi: 10.1088/1674-1137/ac009ahttp://doi.org/10.1088/1674-1137/ac009a
Jun Su, Constraining symmetry energy at subnormal density by isovector giant dipole resonances of spherical nuclei. Chin. Phys. C Vol. 43, No. 6, 064109(2019). doi: 10.1088/1674-1137/43/6/064109http://doi.org/10.1088/1674-1137/43/6/064109
Tong-Gang Yue, Lie-Wen Chen, Zhen Zhang, Ying Zhou, Constraints on the Symmetry Energy from PREX-II in the Multimessenger Era. arXiv:2102.05267
Zhao-Qing Feng. Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nuclear Science and Techniques 29(3):40(2018). doi: 10.1007/s41365-018-0379-zhttp://doi.org/10.1007/s41365-018-0379-z.
Hao Yu, De-Qing Fang, Yu-Gang Ma. Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nuclear Science and Techniques 31(6):61(2020) doi: 10.1007/s41365-020-00766-xhttp://doi.org/10.1007/s41365-020-00766-x.
Jie Liu, Chao Gao, Niu Wan, et al. Basic quantities of the Equation of State in isospin asymmetric nuclear matter. [J]. Nuclear Science and Techniques 32(11):117(2021) doi: 10.1007/s41365-021-00955-2http://doi.org/10.1007/s41365-021-00955-2.
H. Zheng, S. Burrello, M. Colonna, V. Baran, Pre-equilibrium effects in charge-asymmetric low-energy reactions. Phys. Lett. B 769, 424 (2017). doi: 10.1016/j.physletb.2017.04.002http://doi.org/10.1016/j.physletb.2017.04.002
Jun Xu, Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in 208Pb from a Bayesian Approach, Chin.Phys.Lett. 38 04210 (2021) doi: 10.1088/0256-307X/38/4/042101http://doi.org/10.1088/0256-307X/38/4/042101
B. P. Abbott et al.(LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017). doi: 10.1103/PhysRevLett.119.161101http://doi.org/10.1103/PhysRevLett.119.161101
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 121, 161101 (2018). doi: 10.1103/PhysRevLett.121.161101http://doi.org/10.1103/PhysRevLett.121.161101
E. Annala, T. Gorda, A. Kurkela, et. al., Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of StateGravitational-Wave Constraints on the Neutron-Star-Matter Equation of State Phys. Rev. Lett. 120, 172703 (2018). doi: 10.1103/PhysRevLett.120.172703http://doi.org/10.1103/PhysRevLett.120.172703
F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Neutron Skins and Neutron Stars in the Multimessenger Era, Phys. Rev. Lett. 120, 172702 (2018). doi: 10.1103/PhysRevLett.120.172702http://doi.org/10.1103/PhysRevLett.120.172702
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 9, 011001 (2019). doi: 10.1103/PhysRevX.9.011001http://doi.org/10.1103/PhysRevX.9.011001
T. Malik, B. K. Agrawal, J. N. De, et. al., Tides in merging neutron stars: Consistency of the GW170817 event with experimental data on finite nuclei. Phys. Rev. C 99, 052801(R) (2019). doi: 10.1103/PhysRevC.99.052801http://doi.org/10.1103/PhysRevC.99.052801
N. B. Zhang and B. A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars. J. Phys. G: Nucl. Part. Phys. 46, 014002 (2019). doi: 10.1088/1361-6471/aaef54http://doi.org/10.1088/1361-6471/aaef54
C. Y. Tsang, M. B. Tsang, P. Danielewicz, et. al., Insights on Skyrme parameters from GW170817. Phys. Lett. B 796, 1 (2019). doi: 10.1016/j.physletb.2019.05.055http://doi.org/10.1016/j.physletb.2019.05.055
M. B. Tsang, W. G. Lynch, P. Danielewicz, et. al., Symmetry energy constraints from GW170817 and laboratory experiments. Phys. Lett. B 795, 533 (2019). doi: 10.1016/j.physletb.2019.06.059http://doi.org/10.1016/j.physletb.2019.06.059
Chong-Ji Jiang, Yu Qiang, Da-Wei Guan, Qing-Zhen Chai, Chun-Yuan Qiao, and Jun-Chen Pei, Chin.Phys.Lett. 38, 052101(2021). http://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/052101http://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/052101
Jing Zhang, Dehua Wen, Yuxi Li, Constraint on nuclear symmetry energy imposed by f-mode oscillation of neutron stars, Commun. Theor. Phys. 73 (2021) 115302. doi: 10.1088/1572-9494/ac1669http://doi.org/10.1088/1572-9494/ac1669
Bao-Jun Cai, Lie-Wen Chen. Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. [J]. Nuclear Science and Techniques 28(12):185(2017) doi: 10.1007/s41365-017-0329-1http://doi.org/10.1007/s41365-017-0329-1.
Bao-An Li, Bao-Jun Cai, Lie-Wen Chen, Wen-Jie Xie, Jun Xu, Nai-Bo Zhang, A theoretical overview of isospin and EOS effects in heavy-ion reactions at intermediate energies. arXiv:2201.09133
B. T. Reed, F. J. Fattoyev, C. J. Horowitz and J. Piekarewicz, Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. Phys. Rev. Lett. 126, 172503 (2021). doi: 10.1103/PhysRevLett.126.172503http://doi.org/10.1103/PhysRevLett.126.172503
S. V. Pineda, K. Konig, D. M. Rossi, B. A. Brown, A. Incorvati, J. Lantis, K. Minamisono, W. Nortershauser, J. Piekarewicz and R. Powel, et al., Charge Radius of Neutron-Deficient 54Ni and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii, Phys. Rev. Lett. 127, 182503 (2021). doi: 10.1103/PhysRevLett.127.182503http://doi.org/10.1103/PhysRevLett.127.182503
R. Essick, I. Tews, P. Landry and A. Schwenk, Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of 208Pb with Minimal Modeling Assumptions. Phys. Rev. Lett. 127, 192701 (2021). doi: 10.1103/PhysRevLett.127.192701http://doi.org/10.1103/PhysRevLett.127.192701
Jun Xu, Lie-Wen Chen, ManYee Betty Tsang, et. al., Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 93 044609(2016). doi: 10.1103/PhysRevC.93.044609http://doi.org/10.1103/PhysRevC.93.044609
Y. Zhang, Y. Wang, M. Colonna, et. al., Comparison of heavy-ion transport simulations: Collision integral in a box. Phys. Rev. C 97 034625(2018). doi: 10.1103/PhysRevC.97.034625http://doi.org/10.1103/PhysRevC.97.034625
A. Ono, J. Xu, M. Colonna, et. al., Comparison of heavy-ion transport simulations: Collision integral with pions and Δ resonances in a box Phys. Rev. C 100 044617(2019). doi: 10.1103/PhysRevC.100.044617http://doi.org/10.1103/PhysRevC.100.044617
M. Colonna, Y. Zhang, Y. Wang et.al., Comparison of heavy-ion transport simulations: Mean-field dynamics in a box. Phys. Rev. C 104 024603(2021). doi: 10.1103/PhysRevC.104.024603http://doi.org/10.1103/PhysRevC.104.024603
Hermann Wolter, Maria Colonna, Dan Cozma, et al., submitted to Prog. Part. Nucl. Phys.
M. B. Tsang, W. A. Friedman, C. K. Gelbke, et.al., Isotopic Scaling in Nuclear Reactions. Phys. Rev. Lett. 86, 5023 (2001). doi: 10.1103/PhysRevLett.86.5023http://doi.org/10.1103/PhysRevLett.86.5023
M. A. Famiano, T. Liu, W. G. Lynch, et. al., Neutron and Proton Transverse Emission Ratio Measurements and the Density Dependence of the Asymmetry Term of the Nuclear Equation of State Phys. Rev. Lett. 97, 052701 (2006). doi: 10.1103/PhysRevLett.97.052701http://doi.org/10.1103/PhysRevLett.97.052701
M. B. Tsang, T. X. Liu, L. Shi, et. al., Isospin Diffusion and the Nuclear Symmetry Energy in Heavy Ion Reactions. Phys. Rev. Lett. 92, 6 (2004). doi: 10.1103/PhysRevLett.92.062701http://doi.org/10.1103/PhysRevLett.92.062701
Ying-Xun Zhang, Cheng-Shuang Zhou, Ji-Xian Chen, et. al., Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions Sci. China-Phys. Mech. Astron. Vol. 58 No. 11(2015). doi: 10.1007/s11433-015-5723-2http://doi.org/10.1007/s11433-015-5723-2
Chun-Wang Ma, Yu-Gang Ma, Shannon Information Entropy in Heavy-ion Collisions. Prog. Part. Nucl. Phys. 99, 120(2018). doi: 10.1016/j.ppnp.2018.01.002http://doi.org/10.1016/j.ppnp.2018.01.002
Chun-Wang Ma, Hui-Ling Wei, Xing-Quang Liu, et. al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 10391(2021). doi: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
T. X. Liu, W. G. Lynch, R. H. Showalter, et.al., Isospin observables from fragment energy spectra. Phys. Rev. C 86 024605(2012). doi: 10.1103/PhysRevC.86.024605http://doi.org/10.1103/PhysRevC.86.024605
Yingxun Zhang, D. D. S. Coupland, P. Danielewicz, et. al., Influence of in-medium NN cross sections, symmetry potential, and impact parameter on isospin observables. Phys. Rev. C 85, 024602 (2012). doi: 10.1103/PhysRevC.85.024602http://doi.org/10.1103/PhysRevC.85.024602
Yingxun Zhang and Zhuxia Li, Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions. Phys. Rev. C 71, 024604 (2005). doi: 10.1103/PhysRevC.71.024604http://doi.org/10.1103/PhysRevC.71.024604
Yingxun Zhang and Zhuxia Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). doi: 10.1103/PhysRevC.74.014602http://doi.org/10.1103/PhysRevC.74.014602
Yingxun Zhang, P. Danielewicz, M. Famiano, et. al., The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios. Phys. Lett. B 664, 145(2008). doi: 10.1016/j.physletb.2008.03.075http://doi.org/10.1016/j.physletb.2008.03.075
Ying-Xun Zhang, Ning Wang, Qing-Feng Li, et.al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions Front. Phys. 15(5), 54301 (2020). doi: 10.1007/s11467-020-0961-9http://doi.org/10.1007/s11467-020-0961-9
R.J. Charity, M.A. McMahan, G.J. Wozniak, et. al., systematics of complex fragment emission in niobium-induced reactions, Nucl. Phys. A 483, 371 (1988).
R. J. Charity, in Joint ICTP-AIEA Advanced Workshop on Model Codes for Spallation Reactions (IAEA, Vienna, 2008), Report INDC(NDC)-0530.
Jun Su, Long Zhu, Ching-Yuan Huang, Wen-Jie Xie, et. al., Correlation between symmetry energy and effective k-mass splitting with an improved isospin- and momentum-dependent interaction. Phys. Rev. C 94, 034619 (2016). doi: 10.1103/PhysRevC.94.034619http://doi.org/10.1103/PhysRevC.94.034619
Wen-Jie Xie, Jun Su, Long Zhu, et. al., Neutron-proton effective mass splitting in a Boltzmann-Langevin approach. Phys. Rev. C 88, 061601(R) (2013). doi: 10.1103/PhysRevC.88.061601http://doi.org/10.1103/PhysRevC.88.061601
H. H. Gutbrod, A. Sandoval, P. J. Johansen, et.al., Final-State Interactions in the Production of Hydrogen and Helium Isotopes by Relativistic Heavy Ions on Uranium. Phys. Rev. Lett. 37, 667(1976). doi: 10.1103/PhysRevLett.37.667http://doi.org/10.1103/PhysRevLett.37.667
E. Renshaw, S. J. Yennello, K. Kwiatkowski, et. al., Analyzing powers and isotope ratios for the natAg(p→ intermediate-mass fragment) reaction at 200 MeV Phys. Rev. C 44, 2618 (1991). doi: 10.1103/PhysRevC.44.2618http://doi.org/10.1103/PhysRevC.44.2618
W. Neubert and A. S. Botvina, What is the physics behind the 3He-4He anomaly? Eur. Phys. J. A 7, 101 (2000). doi: 10.1007/s100500050016http://doi.org/10.1007/s100500050016
Li Li, Yingxun Zhang, Zhuxia Li, et. al., Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions. Phys. Rev. C 97, 044606 (2018). doi: 10.1103/PhysRevC.97.044606http://doi.org/10.1103/PhysRevC.97.044606
E. Plagnol J. Łukasik, G. Auger, et. al., Onset of midvelocity emissions in symmetric heavy ion reactions. Phys. Rev. C 61, 014606 (1999). doi: 10.1103/PhysRevC.61.014606http://doi.org/10.1103/PhysRevC.61.014606
L. Phair, D.R. Bowman, C.K. Gelbke, et. al., Impact-parameter filters for 36Ar+197Au collisions at E/A = 50, 80 and 110 MeV. Nuclear Physics A 548, 489 (1992). doi: 10.1016/0375-9474(92)90697-Ihttp://doi.org/10.1016/0375-9474(92)90697-I
D. D. S. Coupland, W. G. Lynch, M. B. Tsang, et. al., Influence of transport variables on isospin transport ratios. Phys. Rev. C 84, 054603 (2011). doi: 10.1103/PhysRevC.84.054603http://doi.org/10.1103/PhysRevC.84.054603
Yingxun Zhang, M.B. Tsang, Zhuxia Lia,et. al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186-190 (2014). doi: 10.1016/j.physletb.2014.03.030http://doi.org/10.1016/j.physletb.2014.03.030
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution