1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai APACTRON Particle Equipment Co., Ltd, Shanghai 201800, China
4.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
5.Medical Equipment Innovation Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
puyuehu@163.com
Scan for full text
Xiang-Shang Sun, Yong-Jiang Li, Jun-Ya Liu, et al. Shortening the delivery time of proton therapy by real-time compensation method with raster scanning. [J]. Nuclear Science and Techniques 33(6):73(2022)
Xiang-Shang Sun, Yong-Jiang Li, Jun-Ya Liu, et al. Shortening the delivery time of proton therapy by real-time compensation method with raster scanning. [J]. Nuclear Science and Techniques 33(6):73(2022) DOI: 10.1007/s41365-022-01051-9.
Among the various scanning techniques, spot and raster scanning are the most frequently adopted. Raster scanning turns off the beam only when each isoenergy slice irradiation is completed. This feature intrinsically solves the leakage dose and frequent beam-switching problems encountered during spot scanning. However, to shorten the delivery time of raster scanning, a sophisticated dose control strategy is required to guarantee dose distribution. In this study, a real-time compensation method with raster scanning for synchrotron systems was designed. It is characterized by a small spot-spacing planning strategy and real-time subtraction of the transient number of particles delivered between two planning-spot positions from the planned number of particles of the subsequent raster point. The efficacy of the compensation method was demonstrated by performing accurate raster scanning simulations with an in-house simulation code and accurate final dose evaluations with a commercial treatment planning system. Given the similar dose evaluation criteria under a practical high scanning speed, compared with the spot scanning method, the total delivery time of the compensated raster scanning method was significantly shortened by 53.3% in the case of irradiating a cubical target and by 28.8% in a pelvic case. Therefore, it can be concluded that real-time compensated raster scanning with a fast scanning configuration can significantly shorten the delivery time compared to that of spot scanning. It is important to reduce the pressure on patients caused by prolonged immobilization and to improve patient throughput capacity at particle therapy centers.
Proton therapyRaster scanningDelivery timeScanning simulation
W.T. Chu, B.A. Ludewigt, T.R. Renner, Instrumentation for treatment of cancer using proton and light-ion beams. Rev. Sci. Instru. 64(8), 2055-2122 (1993). doi: 10.1063/1.1143946http://doi.org/10.1063/1.1143946.
T. Haberer, W. Becher, D. Schardt et al., Magnetic scanning system for heavy ion therapy. Nucl. Instrum. Meth. Phy. 296-305 (1993). doi: 10.1016/0168-9002(93)91335-Khttp://doi.org/10.1016/0168-9002(93)91335-K.
E. Pedroni, R. Bacher, H. Blattmann et al., The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med. Phys. 22(1), 37-53 (1995). doi: 10.1118/1.597522http://doi.org/10.1118/1.597522.
M. Durante, J.S. Loeffler, Charged particles in radiation oncology. Nat. Rev. Cli. Oncol. 7(1), 37-43 (2009). doi: 10.1038/nrclinonc.2009.183http://doi.org/10.1038/nrclinonc.2009.183.
H. Paganetti, Proton Therapy Physics. (CRC Press, Taylor & Francis, 2012) pp. 103-122. doi: 10.1088/978-0-7503-1370-4http://doi.org/10.1088/978-0-7503-1370-4.
T. Furukawa, T. Inaniwa, S. Sato et al., Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med. Phys. 37(11), 5672-5682 (2010). doi: 10.1118/1.3501313http://doi.org/10.1118/1.3501313.
ParticleTherapy Co-Operative Group. Available from: http://www.ptcog.ch/http://www.ptcog.ch/.
A.C. Knopf, T.S. Hong, A.J. Lomax, Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys. Med. Biol. 56(22), 7257-71 (2011). doi: 10.1088/0031-9155/56/22/016http://doi.org/10.1088/0031-9155/56/22/016.
S.O. Grozinger, E. Rietzel, Q. Li et al., Simulations to design an online motion compensation system for scanned particle beams. Phys. Med. Biol. 51(14), 3517-31 (2006). doi: 10.1088/0031-9155/51/14/016http://doi.org/10.1088/0031-9155/51/14/016.
S. Minohara, T. Kanai, M. Endo et al., Respiratory gated irradiation system for heavy-ion radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 47(4), 1097-1103 (2000). doi: 10.1016/S0360-3016(00)00524-1http://doi.org/10.1016/S0360-3016(00)00524-1.
H.M. Lu, R. Brett, G. Sharp et al., A respiratory-gated treatment system for proton therapy. Med. Phys. 34(8), 3273-8 (2007). doi: 10.1118/1.2756602http://doi.org/10.1118/1.2756602.
E. Rietzel, C. Bert, Respiratory motion management in particle therapy. Med. Phys. 37(2), 449-60 (2010). doi: 10.1118/1.3250856http://doi.org/10.1118/1.3250856.
C. Bert, N. Saito, A. Schmidt, et al., Target motion tracking with a scanned particle beam. Med. Phys. 34(12), 4768-71 (2007). doi: 10.1118/1.2815934http://doi.org/10.1118/1.2815934.
P. Gut, M. Krieger, T. Lomax et al., Combining rescanning and gating for a time-efficient treatment of mobile tumors using pencil beam scanning proton therapy. Radiat. Oncol. 160, 82-89 (2021). doi: 10.1016/j.radonc.2021.03.041http://doi.org/10.1016/j.radonc.2021.03.041.
T. Kanai, K. Kawachi, H. Matsuzawa, Three-Dimensional beam scanning for proton therapy. Nucl. Instrum. Meth. 214, 491-496 (1983). doi: 10.1016/0167-5087(83)90621-Xhttp://doi.org/10.1016/0167-5087(83)90621-X.
S.M. Zenklusen, E. Pedroni, D. Meer, A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI. Phys. Med. Biol. 55(17), 5103-21 (2010). doi: 10.1088/0031-9155/55/17/014http://doi.org/10.1088/0031-9155/55/17/014.
T. Furukawa, T. Inaniwa, S. Sato et al., Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med. Phys. 34(3), 1085-97 (2007). doi: 10.1118/1.2558213http://doi.org/10.1118/1.2558213.
T. Inaniwa, T. Furukawa, T. Tomitani et al., Optimization for fast-scanning irradiation in particle therapy. Med. Phys. 34(8), 3302-11 (2007). doi: 10.1118/1.2754058http://doi.org/10.1118/1.2754058.
Q. Li, S.O. Groezinger, T. Haberer et al., Online compensation for target motion with scanned particle beams: simulation environment. Phys. Med. Biol. 49(14), 3029-46 (2004). doi: 10.1088/0031-9155/49/14/001http://doi.org/10.1088/0031-9155/49/14/001.
G. Klimpki, Y. Zhang, G. Fattori et al., The impact of pencil beam scanning techniques on the effectiveness and efficiency of rescanning moving targets. Phys. Med. Biol. 63(14), 145006 (2018). doi: 10.1088/1361-6560/aacd27http://doi.org/10.1088/1361-6560/aacd27.
Y.J. Jia, Y.J. Li, X. Zhang, Simulation of spot scanning in proton therapy. Nuclear Techniques 39(9), 090202 (2016). doi: 10.11889/j.0253-3219.2016.hjs.39.090202http://doi.org/10.11889/j.0253-3219.2016.hjs.39.090202. (in Chinese).
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. Phy. Res. Sect. A 506(3), 250-303 (2003). doi: 10.1016/s0168-9002(03)01368-8http://doi.org/10.1016/s0168-9002(03)01368-8.
J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Meth. Phy. Res. Sect. A 835, 186-225 (2016). doi: 10.1016/j.nima.2016.06.125http://doi.org/10.1016/j.nima.2016.06.125.
P.B. He, Q. Li, Target motion compensation by means of adjustable heavy-ion beam slow extraction: Simulations. Int. J. Part. Ther. 1(4), 884-898 (2015). doi: 10.14338/IJPT-14-00009.1http://doi.org/10.14338/IJPT-14-00009.1.
D.A. Low, J.F. Dempsey, Evaluation of the gamma dose distribution comparison method. Med. Phys. 30(9), 2455-64 (2003). doi: 10.1118/1.1598711http://doi.org/10.1118/1.1598711.
G. Janssens. OpenReggui. 2019; Available from: http://www.openreggui.org/http://www.openreggui.org/.
M. Newpower, J. Schuemann, R. Mohan et al., Comparing 2 Monte Carlo systems in use for proton therapy research. Int. J. Part. Ther. 6(1), 18-27 (2019). doi: 10.14338/IJPT-18-00043.1http://doi.org/10.14338/IJPT-18-00043.1.
C. Wu, Y.H. Pu, X. Zhang, GPU-accelerated scanning path optimization in particle cancer therapy. Nucl. Sci. Tech. 30, 56 (2019). doi: 10.1007/s41365-019-0582-6http://doi.org/10.1007/s41365-019-0582-6
G. Klimpki, M. Eichin, C. Bula et al., Real-time beam monitoring in scanned proton therapy. Nucl. Instrum. Meth. Phy. Res. Sect. A 891, 62-67 (2018). doi: 10.1016/j.nima.2018.02.107http://doi.org/10.1016/j.nima.2018.02.107.
G. Klimpki, S. Psoroulas, C. Bula et al., A beam monitoring and validation system for continuous line scanning in proton therapy. Phy. Med. Biol. 62(15), 6126-6143 (2017). doi: 10.1088/1361-6560/aa772ehttp://doi.org/10.1088/1361-6560/aa772e.
R.C. Han, Y.J. Li, Y.H. Pu, Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy. Nucl Sci Tech. 31, 13 (2020). doi: 10.1007/s41365-020-0722-zhttp://doi.org/10.1007/s41365-020-0722-z
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution