1.State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
2.Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
3.School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
zlei@ustc.edu.cn
Scan for full text
Bao-Lin Hou, Lei Zhao, Jia-Jun Qin, et al. Prototype of the readout electronics for the RICH PID detector in the STCF. [J]. Nuclear Science and Techniques 33(6):80(2022)
Bao-Lin Hou, Lei Zhao, Jia-Jun Qin, et al. Prototype of the readout electronics for the RICH PID detector in the STCF. [J]. Nuclear Science and Techniques 33(6):80(2022) DOI: 10.1007/s41365-022-01056-4.
The ring imaging Cherenkov (RICH) detector for particle identification (PID) is being evaluated for the future super tau-charm facility (STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number (~690,000) of detector channels in the future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise, increasing density, and improving precision. The requirements of the readout electronics are explored, the down-selection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~1 ns (RMS) when the input charge is greater than ~12 fC based on the APV25 chip, while the time resolution is better than ~1 ns (RMS) at an input charge of over ~48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~0.5 fC (RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.
Readout electronicsTime measurementCharge measurementRICH PID detectorSTCF
H.-P. Peng, High Intensity Electron Positron Accelerator(HIEPA) Super Tau Charm Facility(STCF) in China. Novosibirsk, Russia, 2018. [Online]. Available: https://indico.inp.nsk.su/event/10/contributions/254/attachments/241/273/Charm-2018_haiping.pdfhttps://indico.inp.nsk.su/event/10/contributions/254/attachments/241/273/Charm-2018_haiping.pdf
Q. Luo, D.R. Xu, Progress on preliminary conceptual study of HIEPA, a Super Tau-Charm Factory in China. (9th International Particle Accelerator Conference): 422-424 (2018). doi: 10.18429/JACoW-IPAC2018-MOPML013http://doi.org/10.18429/JACoW-IPAC2018-MOPML013
C. Zhang, G. X. Pei, BEPCII-The Second Phase Construction of Beijing Electron Positron Collider. in Proceedings of the 2005 Particle Accelerator Conference, 131-135 (2005). doi: 10.1109/PAC.2005.1590381http://doi.org/10.1109/PAC.2005.1590381.
F. A. Harris, BEPCII and BESIII. Nucl. Phys. B - Proceedings Supplements. 162, 345-350 (2006). doi: 10.1016/j.nuclphysbps.2006.09.119http://doi.org/10.1016/j.nuclphysbps.2006.09.119
C. Lippmann, Particle identification. Nucl. Instrum. Meth. A 666, 148-172 (2012). doi: 10.1016/j.nima.2011.03.009http://doi.org/10.1016/j.nima.2011.03.009
P. Abbon, M. Alexeev, H. Angerer et al., Particle identification with COMPASS RICH-1. Nucl. Instrum. Meth. A 631(1), 26-39 (2011). doi: 10.1016/j.nima.2010.11.106http://doi.org/10.1016/j.nima.2010.11.106
J. Agarwala, M. Alexeev, C.D.R. Azevedo et al., The MPGD-based photon detectors for the upgrade of COMPASS RICH-1 and beyond. Nucl. Instrum. Meth. A 936, 416-419 (2019). doi: 10.1016/j.nima.2018.10.092http://doi.org/10.1016/j.nima.2018.10.092
B.B. Qi, K.Y. Liang, Z.Y. Zhang et al., Optimization of the double micro-mesh gaseous structure (DMM) for low ion-backflow applications. Nucl. Instrum. Meth. A 976, 164282 (2020). doi: 10.1016/j.nima.2020.164282http://doi.org/10.1016/j.nima.2020.164282
M. Alexeev, R. Birsa, M. Bodlak et al., MPGD-based counters of single photons developed for COMPASS RICH-1. J. Instrum. 9, C09017 (2014). doi: 10.1088/1748-0221/9/09/c09017http://doi.org/10.1088/1748-0221/9/09/c09017
M. Alexeev, R. Birsa, F. Bradamante et al., Status and progress of the novel photon detectors based on THGEM and hybrid MPGD architectures. Nucl. Instrum. Meth. A 766, 133-137 (2014). doi: 10.1016/j.nima.2014.07.030http://doi.org/10.1016/j.nima.2014.07.030
S.Y. Zhao, H.Y. Wu, B.T. Hu et al. Simulation of a new hybrid MPGD with improved time resolution and decreased discharge probabilities using Garfield plus. Nucl. Sci. Tech. 28, 102 (2017). doi: 10.1007/s41365-017-0244-5http://doi.org/10.1007/s41365-017-0244-5.
S.-M. Xiao, Z.P. Luo, Q. Liu et al., Development of alpha surface contamination monitor based on THGEM for contamination distribution. Nucl. Sci. Tech. 30, 150 (2019). doi: 10.1007/s41365-019-0678-zhttp://doi.org/10.1007/s41365-019-0678-z
J. Almeida, A. Amadon, P. Besson et al., Review of the development of cesium iodide photocathodes for application to large RICH detectors. Nucl. Instrum. Meth. A 367, 332-336 (1995). doi: 10.1016/0168-9002(95)00571-4http://doi.org/10.1016/0168-9002(95)00571-4
J. Derré, Y. Giomataris, P. Rebourgeard et al., Fast signals and single electron detection with a MICROMEGAS photodetector. Nucl. Instrum. Meth. A 449(1), 314-321 (2000). doi: 10.1016/S0168-9002(99)01452-7http://doi.org/10.1016/S0168-9002(99)01452-7.
J. Bortfeldt, F. Brunbauer, C. David et al., PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector. Nucl. Instrum. Meth. A 903, 317-325 (2018). doi: 10.1016/j.nima.2018.04.033http://doi.org/10.1016/j.nima.2018.04.033
X.J. Hao, S.B. Liu, L. Zhao et al., A digitalizing board for the prototype array of LHAASO WCDA. Nucl. Sci. Tech. 22, 178-184 (2011). doi: 10.13538/j.1001-8042/nst.22.178-184http://doi.org/10.13538/j.1001-8042/nst.22.178-184
L. Zhao, L.-F. Kang, J.-W. Zhou et al., A 16-Channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). doi: 10.13538/j.1001-8042/nst.25.010401http://doi.org/10.13538/j.1001-8042/nst.25.010401
E.-L. Chen, L. Zhao, Y. Li et al., Test system of the front-end readout for an application-specific integrated circuit for the Water Cherenkov Detector Array at the Large High-Altitude Air Shower Observatory. Nucl. Sci. Tech. 28, 81 (2017). doi: 10.1007/s41365-017-0238-3http://doi.org/10.1007/s41365-017-0238-3
E.C. Pollacco, G.F. Grinyer, F. Abu-Nimeh et al., GET: A generic electronics system for TPCs and nuclear physics instrumentation. Nucl. Instrum. Meth. A 887, 81-93 (2018). doi: 10.1016/j.nima.2018.01.020http://doi.org/10.1016/j.nima.2018.01.020
M. J. French, L.L. Jones, Q. Morrissey et al., Design and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker. Nucl. Instrum. Meth. A 466, 359-365 (2001). doi: 10.1016/S0168-9002(01)00589-7http://doi.org/10.1016/S0168-9002(01)00589-7
D. Attie, S. Aune, P. Baron et al., The readout system for the Clas12 Micromegas vertex tracker. in 2014 19th IEEE-NPSS Real Time Conference, Nara, Japan, 1-11 (2014). doi: 10.1109/RTC.2014.7097517http://doi.org/10.1109/RTC.2014.7097517.
P. Baron, D. Calvet, E. Delagnes et al., AFTER, an ASIC for the readout of the large T2K time projection chambers. IEEE T. Nucl. Sci. 55, 1744-1752 (2008). doi: 10.1109/Tns.2008.924067http://doi.org/10.1109/Tns.2008.924067.
A. Candelori, A. Paccagnella, F. Nardi et al., SPICE evaluation of the S/N ratio for Si microstrip detectors. IEEE T. Nucl. Scie. 46, 1261-1273 (1999). doi: 10.1109/23.795802http://doi.org/10.1109/23.795802.
D. Stricker-Shaver, S. Ritt, B.J. Pichler, Novel calibration method for switched capacitor arrays enables time measurements with sub-picosecond resolution. IEEE T. Nucl. Sci. 61, 3607-3617 (2014). doi: 10.1109/TNS.2014.2366071http://doi.org/10.1109/TNS.2014.2366071.
S. Anvar, P. Baron, B. Blank et al., AGET, the GET front-end ASIC, for the readout of the Time Projection Chambers used in nuclear physic experiments. in 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain. 745-749 (2011). doi: 10.1109/NSSMIC.2011.6154095http://doi.org/10.1109/NSSMIC.2011.6154095
M. Raymond, M. French, J. Fulcher et al., The APV25 0.25/spl mu/m CMOS readout chip for the CMS tracker. in 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149). 9/113-119/118 (2000). doi: 10.1109/NSSMIC.2000.949881http://doi.org/10.1109/NSSMIC.2000.949881
D. Neyret, M. Anfreville, Y. Bedfer et al., New pixelized Micromegas detector for the COMPASS experiment. J. Instrum. 4(12), P12004 (2009). doi: 10.1088/1748-0221/4/12/p12004http://doi.org/10.1088/1748-0221/4/12/p12004.
B.L. Hou, L. Zhao, Z. Chen et al., Development of verification electronics system for STCF RICH prototype detector and its testing with detector. Atomic Energy Science and Technology 54(6), 1055-1060 (2020). doi: 10.7538/yzk.2020.youxian.0045http://doi.org/10.7538/yzk.2020.youxian.0045 (in Chinese)
V. Bellini, E. Cisbani, M. Capogni et al., GEM tracker for high luminosity experiments at the JLab Hall A. J. Instrumentation 7, C05013 (2012). doi: 10.1088/1748-0221/7/05/c05013http://doi.org/10.1088/1748-0221/7/05/c05013
T. Uchida, Hardware-based TCP processor for Gigabit Ethernet. IEEE T. Nucl. Sci. 55, 1631-1637 (2008). doi: 10.1109/TNS.2008.920264http://doi.org/10.1109/TNS.2008.920264
Y. Wang, S.B Liu, C.Q. Feng et al., Readout electronics for CEPC semidigital hadron calorimeter preprototype. IEEE T. Nucl. Sci. 66, 1064-1069 (2019). doi: 10.1109/TNS.2019.2917289http://doi.org/10.1109/TNS.2019.2917289
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution