1.State Key Laboratory of Simulation and Effect for Intense Pulse Radiation, Northwest Institute of Nuclear Technology, Xi'an 710024, China
jiangxb67@163.com; 906692069@qq.com
Scan for full text
Ze-Peng Wu, Xin-Biao Jiang, Wen-Shou Zhang, et al. Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement. [J]. Nuclear Science and Techniques 33(6):78(2022)
Ze-Peng Wu, Xin-Biao Jiang, Wen-Shou Zhang, et al. Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement. [J]. Nuclear Science and Techniques 33(6):78(2022) DOI: 10.1007/s41365-022-01062-6.
Microfission chambers loaded with highly enriched fissile materials are widely used for measuring power in reactors. The neutron sensitivity of the microfission chamber is a key parameter that determines the accuracy of the power measurement. To evaluate the performance of the FC4A microfission chamber, in this work, we introduced an accurate and validated model of the microfission chamber, a performed Monte Carlo simulation of the neutron sensitivity of the microfission chamber with GEANT4 code, and conducted an irradiation experiment on the neutron irradiation effect platform #3 of the Xi'an Pulsed Reactor. We compared the simulated sensitivity with the experimental results, which showed that the sensitivity obtained from the simulation was in good agreement with the experimental results. In addition, we studied the impact of the design parameters of the fission chamber on the calculated neutron sensitivity of the microfission chamber.
Micro fission chamberNeutron sensitivityMonte Carlo simulationGEANT4
A. Borella, R. Rossa, K. van der Meer, Modeling of a highly enriched 235U fission chamber for spent fuel assay. Ann. Nucl. Energy 62, 224-230 (2013). doi: 10.1016/j.anucene.2013.06.015http://doi.org/10.1016/j.anucene.2013.06.015
Z.W. Bell, M.J. Harrison, D.E. Holcomb et al., High-temperature fission chamber for He- and FLiBe-cooled reactors. Oak Ridge National Laboratory, DE-AC05-00OR22725, 2015.
J. Taieb, B. Laurent, G. Belier et al., A new fission chamber dedicated to prompt fission neutron spectra measurements. Nucl. Instrum. Meth. A 833, 1-7 (2016). doi: 10.1016/j.nima.2016.06.137http://doi.org/10.1016/j.nima.2016.06.137
G.F. Knoll, Radiation Detection and Measurement, 3th edn. New York(USA): John Wiley & Sons, 1989, pp.505-710.
C. Jammes, P. Filliatre, P. Loiseau, On the impact of the fissile coating on the fission chamber signal. Nucl. Instrum. Meth. A 681, 101-109 (2012). doi: 10.1016/j.nima.2012.03.032http://doi.org/10.1016/j.nima.2012.03.032
T. Nishitani, M. Yamauchi, M Izumi et al., Engineering design of the ITER invessel neutron monitor using micro fission chambers. Fusion Eng. Des. 82, 1192-1197 (2007). doi: 10.1016/j.fusengdes.2007.05.060http://doi.org/10.1016/j.fusengdes.2007.05.060
M. yamauchi, T. Nishitani, K. Ochiai et al., Development of in-vessel neutron monitor using micro fission chambers for ITER. Rev. Sci. Instrum. 74, 1730-1734 (2003). doi: 10.1063/1.1534397http://doi.org/10.1063/1.1534397
T. Nishitani, S. Kasai, L.C. Johnson et al., Neutron monitor using microfission chambers for the International Thermonuclear Experimental Reactor. Rev. Sci. Instrum. 70, 1141-1144 (1999). doi: 10.1063/1.1149297http://doi.org/10.1063/1.1149297
M. Fadil, C. Blandin, S. Christophe et al., Development of fission micro chambers for nuclear waste incineration studies. Nucl. Instrum. Meth. A 476, 313-317 (2002). doi: 10.1016/s0168-9002(01)01446-2http://doi.org/10.1016/s0168-9002(01)01446-2
Q. Yang, Y.X. Pu, D.Z. Li et al., Xi' an Pulsed Reactor. Nuclear Power Engineering. 23(6), 1-6 (2002). doi: 10.3969/j.issn.0258-0926.2002.06.001http://doi.org/10.3969/j.issn.0258-0926.2002.06.001 (in chinese)
E10 Committee, Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics. Amercan Society for Testing and Materials, ASTM E720-08, 2011. doi: 10.1520/E0720-08http://doi.org/10.1520/E0720-08
S.P. Tripathy, C. Sunil, M. Nandy et al., Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods. Nucl. Instrum. Meth. A 583, 421-425 (2007). doi: 10.1016/j.nima.2007.09.028http://doi.org/10.1016/j.nima.2007.09.028
Y. Musa, Y.A. Ahmed, Y.A. Yamusa et al., Determination of radial and axial neutron flux distribution in irradiation channel of NIRR-1 using foil activation technique. Ann. Nucl. Energy 50, 50-55 (2012). doi: 10.1016/j.anucene.2012.07.014http://doi.org/10.1016/j.anucene.2012.07.014
D. Turkoglu, J. Burke, R. Lewandowski et al., Characterization of a new external neutron beam facility at the Ohio State University. J. Radioanal. Nucl. Chem. 291, 321-327 (2012). doi: 10.1007/s10967-011-1289-2http://doi.org/10.1007/s10967-011-1289-2
R.G. Abrefah, B.J.B Nyarko, E.H.K. Akaho et al., Axial and radial distribution of thermal and epithermal neutron fluxes in irradiation channels of the Ghana Research Reactor-1 using foil activation analysis. Ann. Nucl. Energy 37, 1027-1035 (2010). doi: 10.1016/j.anucene.2010.04.017http://doi.org/10.1016/j.anucene.2010.04.017
A. Seghour, F.Z. Seghour, Neutron energy spectra unfolding from foil activation detector measurements with MINUIT. Nucl. Instrum. Meth. A 457, 347-355 (2005). doi: 10.1016/j.nima.2005.09.010http://doi.org/10.1016/j.nima.2005.09.010
N. Tsoulfanidis, S. Landsberger, Measurement and detection of radiation. New York (USA): CRC Press, 2011, pp.377-380.
M. Moghari, Fast neutron spectrum measurement with threshold detectors. Ph.D. Thesis, Iowa State University, 1979.
W.N. McElroy, S. Berg, T. Crockett et al., A computer-automated iterative method for neutron flux spectra determination by foil activation. Atomics international USA, AFWL-TR-67-41, 1967.
R. Dierckx, M.L. Nimis, V. Sangiust et al., Unfolding methods in neutron spectra measurements by foil activation technique. Nucl. Instrum. Meth. 105, 1-4 (1972). doi: 10.1016/0029-554x(72)90482-xhttp://doi.org/10.1016/0029-554x(72)90482-x
ENDF/B-VII.1: Evaluated Nuclear Data File (ENDF). https://www-nds.iaea.org/exfor/endf.htmhttps://www-nds.iaea.org/exfor/endf.htm. Accessed 1 November 2021.
J. Jayapandian, K. Gururaj, S. Abhaya et al., Embedded design based virtual instrument program for positron beam automation. Appl. Surf. Sci. 255, 104-107 (2008). doi: 10.1016/j.apsusc.2008.05.280http://doi.org/10.1016/j.apsusc.2008.05.280
MRS-2000 Datasheet. https://www.mesytec.com/products/neutron-scattering/MRS-2000.htmlhttps://www.mesytec.com/products/neutron-scattering/MRS-2000.html
S. Agostinelli, J. Allison, K. Amako, GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A 338, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
J. Allison, K. Amako, J. Apostolakis et al., GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270-278 (2006). doi: 10.1109/TNS.2006.869826http://doi.org/10.1109/TNS.2006.869826
S. Hauf, M. Kuster, M. Batic et al., Validation of GEANT4-based radioactive decay simulation. IEEE Trans. Nucl. Sci. 60, 2984-2997 (2013). doi: 10.1109/TNS.2013.2271047http://doi.org/10.1109/TNS.2013.2271047
G. Soti, F. Wauters, M. Breitenfeldt et al., Performance of GEANT4 in simulating semiconductor particle detector response in the energy range below 1 MeV. Nucl. Instrum. Meth. A 728, 11-22 (2013). doi: 10.1016/j.nima.2013.06.047http://doi.org/10.1016/j.nima.2013.06.047
M. Jandel, T.A. Bredeweg, A. Couture et al., GEANT4 simulations of the DANCE array. Nucl. Instrum. Meth. B 261, 1117-1121 (2007). doi: 10.1016/j.nimb.2007.04.252http://doi.org/10.1016/j.nimb.2007.04.252
F. Atchison, T. Brys, M. Daum et al., The simulation of ultracold neutron experiments using GEANT4. Nucl. Instrum. Meth. A 552, 513-521 (2005). doi: 10.1016/j.nima.2005.06.065http://doi.org/10.1016/j.nima.2005.06.065
X. Ning, X.Z. Cao, C. Li et al., Modification of source contribution in PALS by simulation using Geant4 code. Nucl. Instrum. Meth. B 397, 75-81 (2017). doi: 10.1016/j.nimb.2017.02.038http://doi.org/10.1016/j.nimb.2017.02.038
L.Y. Dubov, V.I. Grafutin, Y.V. Funtikov et al., Optimization of BaF2 positron-lifetime spectrometer geometry based on the Geant4 simulations. Nucl. Instrum. Meth. B 334, 81-87 (2014). doi: 10.1016/j.nimb.2014.05.006http://doi.org/10.1016/j.nimb.2014.05.006
S. Ashrafi, S.M. Etesami, Monte Carlo simulation of a plastic scintillator response function in β–γ coincidence measurement. Radiat. Meas. 43, 1511-1514 (2008). doi: 10.1016/j.radmeas.2008.09.001http://doi.org/10.1016/j.radmeas.2008.09.001
C. Rutjes, D. Sarria, A.B. Skeltved, Evaluation of Monte Carlo tools for high energy atmosphere physics. Geosci. Model Dev. 9, 3961-3974 (2016). doi: 10.5194/gmd-9-3961-2016http://doi.org/10.5194/gmd-9-3961-2016
J.F. Ziegler, SRIM-2013. http://www.srim.org/#SRIMhttp://www.srim.org/#SRIM Accessed 1 November 2021
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution