1.Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
2.School of Nuclear Science and Engineering, North China Electric Power University, 2 BeiNong Road, Beijing 102206, China
3.College of nuclear science and technology, Beijing Normal University, 19 Xinjiekou outer St., Beijing 100875, China
4.Aerospace Information Research Institute, Chinese Academy of Sciences, 9 Dengzhuang South Road, Beijing 100094, China
hanran@ncepu.edu.cn
zwli@whigg.ac.cn
Scan for full text
Ya-Ping Cheng, Ran Han, Zhi-Wei Li, et al. Imaging internal density structure of the Laoheishan volcanic cone with cosmic ray muon radiography. [J]. Nuclear Science and Techniques 33(7):88(2022)
Ya-Ping Cheng, Ran Han, Zhi-Wei Li, et al. Imaging internal density structure of the Laoheishan volcanic cone with cosmic ray muon radiography. [J]. Nuclear Science and Techniques 33(7):88(2022) DOI: 10.1007/s41365-022-01072-4.
Muon radiography is a promising technique for imaging the internal density structures of targets such as tunnels, pyramids, and volcanoes up to a scale of a few hundred meters by measuring the flux attenuation of cosmic ray muons after they have travelled through these targets. In this study, we conducted experimental muon radiography of one of the volcanoes in the Wudalianchi area in Northeast China to image its internal density structure. The muon detector used in this study was composed of plastic scintillators and silicon photomultipliers. After approximately one and a half months of observing the crater and conduit of the Laoheishan volcano cone in Wudalianchi from September 23,rd, to November 10,th, 2019, more than 3 million muon tracks fulfilling the data selection criteria were collected. Based on the muon samples and high-resolution topography obtained through aerial photogrammetry using an unmanned aerial vehicle, a density image of the Laoheishan volcano cone was constructed. The results obtained in this experiment demonstrate the feasibility of using a radiography technique based on plastic scintillator detectors. To obtain the density distribution, we performed a detailed background analysis and found that low-energy charged particles dominated the background noise. Relatively higher densities were found near the surface of the volcanic cone, whereas relatively lower densities were found near the center of the volcanic cone. The experiment in this study is the first volcano muon tomography study performed in China. Our work provides an important reference for future research.
Muon radiographyMuon transmission imagingDensity
G. Macedonio, M. Martini, Motivations for muon radiography of active volcanoes. Earth, Planets and Space 62, 139-143 (2010). doi: 10.5047/eps.2009.03.005http://doi.org/10.5047/eps.2009.03.005
A. Barnoud, V. Cayol, V. Niess, et al., Bayesian joint muographic and gravimetric inversion applied to volcanoes. Geophysical Journal International 218, 2179-2194 (2019). doi: 10.1093/gji/ggz300http://doi.org/10.1093/gji/ggz300
K. Nagamine, M. Iwasaki, K. Shimomura, et al., Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 356, 585-595 (1995). doi: 10.1016/0168-9002(94)01169-9http://doi.org/10.1016/0168-9002(94)01169-9
K. Borozdin, G. Hogan, C. Morris, et al., Surveillance: Radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003). doi: 10.1038/422277ahttp://doi.org/10.1038/422277a
H.K. Tanaka, T. Nakano, S. Takahashi, et al., High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of mt. asama, japan. Earth and Planetary Science Letters 263, 104-113 (2007). doi: 10.1016/j.epsl.2007.09.001http://doi.org/10.1016/j.epsl.2007.09.001
H.K.M. Tanaka, T. Nakano, S. Takahashi, et al., Imaging the conduit size of the dome with cosmic-ray muons: The structure beneath showa-shinzan lava dome, japan. Geophysical Research Letters 34, L22311 (2007). doi: 10.1029/2007GL031389http://doi.org/10.1029/2007GL031389
D. Gibert, F. Beauducel, Y. Déclais, et al., Muon tomography: Plans for observations in the lesser antilles. Earth, Planets and Space 62, 153-165 (2010). doi: 10.5047/eps.2009.07.003http://doi.org/10.5047/eps.2009.07.003
H. Tanaka, T. Nakano, S. Takahashi, et al., Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of a volcano, mt. asama. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 575, 489-497 (2007). doi: 10.1016/j.nima.2007.02.104http://doi.org/10.1016/j.nima.2007.02.104
N. Lesparre, D. Gibert, J. Marteau, et al., Geophysical muon imaging: feasibility and limits. Geophysical Journal International 183, 1348-1361 (2010). doi: 10.1111/j.1365-246X.2010.04790.xhttp://doi.org/10.1111/j.1365-246X.2010.04790.x
X.Y. Pan, Y.F. Zheng, Z. Zeng, et al., Experimental validation of material discrimination ability of muon scattering tomography at the tumuty facility. Nuclear Science and Techniques 30, 120 (2019). doi: 10.1007/s41365-019-0649-4http://doi.org/10.1007/s41365-019-0649-4
X.D. Su, G.L. Zhang, S.P. Xu, et al., Attenuation coefficients of gamma and x-rays passing through six materials. Nuclear Science and Techniques 31, 3 (2020). doi: 10.1007/s41365-019-0717-9http://doi.org/10.1007/s41365-019-0717-9
M. Guan, M.C. Chu, J. Cao, et al., A parametrization of the cosmic-ray muon flux at sea-level. https://doi.org/10.48550/arXiv.1509.06176https://doi.org/10.48550/arXiv.1509.06176
T.K. Gaisser, T. Stanev, High-energy cosmic rays. Nuclear Physics A 777, 98-110 (2006). Special Isseu on Nuclear Astrophysics. doi: 10.1016/j.nuclphysa.2005.01.024http://doi.org/10.1016/j.nuclphysa.2005.01.024
D. Chirkin, Fluxes of atmospheric leptons at 600 gev - 60 tev. (2004). https://doi.org/10.48550/ARXIV.HEP-PH/0407078https://doi.org/10.48550/ARXIV.HEP-PH/0407078
H.A. Bethe, Passage of radiations through matter. Experimental nuclear physics.
P.D. Group, P. Zyla, R. Barnett, et al., Review of particle physics. Progress of Theoretical and Experimental Physics 2020, 083C01 (2020). doi: 10.1093/ptep/ptaa104http://doi.org/10.1093/ptep/ptaa104
D.E. GROOM, N.V. MOKHOV, S.I. STRIGANOV, Muon stopping power and range tables 10 mev-100 tev. Atomic Data and Nuclear Data Tables 78, 183-356 (2001). doi: 10.1006/adnd.2001.0861http://doi.org/10.1006/adnd.2001.0861
F. Ambrosino, A. Anastasio, A. Bross, et al., Joint measurement of the atmospheric muon flux through the puy de dôme volcano with plastic scintillators and resistive plate chambers detectors. Journal of Geophysical Research: Solid Earth 120, 7290-7307 (2015). doi: 10.1002/2015JB011969http://doi.org/10.1002/2015JB011969
H.K.M. Tanaka, T. Uchida, M. Tanaka, et al., Cosmic-ray muon imaging of magma in a conduit: Degassing process of satsuma-iwojima volcano, japan. Geophysical Research Letters 36, L01304 (2009). doi: 10.1029/2008GL036451http://doi.org/10.1029/2008GL036451
H. Tanaka, T. Nakano, S. Takahashi, et al., Radiographic imaging below a volcanic crater floor with cosmic-ray muons. American Journal of Science 308, 843-850 (2008).
R. Han, Q. Yu, Z. Li, et al., Cosmic muon flux measurement and tunnel overburden structure imaging. Journal of Instrumentation 15, P06019 (2020). doi: 10.1088/1748-0221/15/06/P06019http://doi.org/10.1088/1748-0221/15/06/P06019
J. Li, Z. Li, R. Han, et al., Investigation of structures in tunnel overburdens by means of muon radiography. Journal of Instrumentation 17, P05029 (2022). doi: 10.1088/1748-0221/17/05/P05029http://doi.org/10.1088/1748-0221/17/05/P05029
Z. Li, S. Ni, B. Zhang, et al., Shallow magma chamber under the wudalianchi volcanic field unveiled by seismic imaging with dense array. Geophysical Research Letters 43, 4954-4961 (2016). doi: 10.1002/2016GL068895http://doi.org/10.1002/2016GL068895
H. Gotoh, H. Yagi, Solid angle subtended by a rectangular slit. Nuclear Instruments and Methods 96, 485-486 (1971). doi: 10.1016/0029-554X(71)90624-0http://doi.org/10.1016/0029-554X(71)90624-0
S. Agostinelli, J. Allison, K.a. Amako, et al., Geant4–a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
C. Hagmann, D. Lange, D. Wright, in 2007 IEEE Nuclear Science Symposium Conference Record, Cosmic-ray shower generator (cry) for monte carlo transport codes. Vol. 2, IEEE, 2007, pp. 1143-1146. doi: 10.1109/NSSMIC.2007.4437209http://doi.org/10.1109/NSSMIC.2007.4437209
R. Nishiyama, Y. Tanaka, S. Okubo, et al., Integrated processing of muon radiography and gravity anomaly data toward the realization of highresolution 3-d density structural analysis of volcanoes: Case study of showa-shinzan lava dome, usu, japan. Journal of Geophysical Research 119, 699-710 (2014). doi: 10.1002/2013JB010234http://doi.org/10.1002/2013JB010234
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution