1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
nghuaruiwu@mail.tsinghua.edu.cn
wangxuewu@tsinghua.edu.cn
Scan for full text
Wen-Bo Mo, Hua-Rui Wu, Xue-Wu Wang. Selection diagram of design algorithms for neutron-focusing supermirrors. [J]. Nuclear Science and Techniques 33(8):104(2022)
Wen-Bo Mo, Hua-Rui Wu, Xue-Wu Wang. Selection diagram of design algorithms for neutron-focusing supermirrors. [J]. Nuclear Science and Techniques 33(8):104(2022) DOI: 10.1007/s41365-022-01080-4.
The neutron supermirror is an important neutron optical device that can significantly improve the efficiency of neutron transport in neutron guides and has been widely used in research neutron sources. Three types of algorithms, including approximately 10 algorithms, have been developed for designing high-efficiency supermirror structures. In addition to its applications in neutron guides, in recent years the use of neutron supermirrors in neutron-focusing mirrors has been proposed to advance the development of neutron scattering and neutron imaging instruments, especially those at compact neutron sources. In this new application scenario, the performance of supermirrors strongly affects the instrument performance; therefore, a careful evaluation of the design algorithms is needed. In this study, we examine two issues: the effect of nonuniform film thickness distribution on a curved substrate and the effect of the specific neutron intensity distribution on the performance of neutron supermirrors designed using existing algorithms. The effect of film thickness nonuniformity is found to be relatively insignificant, whereas the effect of the neutron intensity distribution over ,Q, (where ,Q, is the magnitude of the scattering vector of incident neutrons) is considerable. Selection diagrams that show the best design algorithm under different conditions are obtained from these results. When the intensity distribution is not considered, empirical algorithms can obtain the highest average reflectivity, whereas discrete algorithms perform best when the intensity distribution is taken into account. The reasons for the differences in performance between algorithms are also discussed. These findings provide a reference for selecting design algorithms for supermirrors for use in neutron optical devices with unique geometries and can be very helpful for improving the performance of focusing supermirror-based instruments.
Neutron-focusing supermirrorDesign algorithmThickness nonuniformityIntensity distribution over QSelection diagram
J.M. Carpenter, C.-K. Loong, Elements of slow-neutron scattering. (Cambridge University Press, Cambridge, 2015)
A. Furrer, J.F. Mesot, T. Strssle, Neutron scattering in condensed matter physics. Series on Neutron Techniques and Applications, vol 4 (World Scientific Publishing Company, Singapore, 2009)
R. Ashkar, H.Z. Bilheux, H. Bordallo et al., Neutron scattering in the biological sciences: progress and prospects. Acta Cryst. D74, 1129-1168 (2018). doi: 10.1107/S2059798318017503http://doi.org/10.1107/S2059798318017503
J.S. Higgins, H.C. Benoit, Polymers and neutron scattering. Oxford series on neutron scattering in condensed matter, vol 8 (Clarendon Press, Oxford, 1994)
M.T. Hutchingset al., Introduction to the characterization of residual stress by neutron diffraction. (CRC press, Boca Raton, 2005). doi: 10.1201/9780203402818http://doi.org/10.1201/9780203402818
N. Kardjilov, I. Manke, A. Hilger et al., Neutron imaging in materials science. Mater. Today 14(6), 248-256 (2011). doi: 10.1016/S1369-7021(11)70139-0http://doi.org/10.1016/S1369-7021(11)70139-0
I.S. Anderson, R.L. McGreevy, H.Z. Bilheux (ed.), Neutron imaging and applications. (Springer, New York, 2009). doi: 10.1007/978-0-387-78693-3http://doi.org/10.1007/978-0-387-78693-3
I.S. Anderson, C. Andreani, J.M. Carpenter et al., Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. 654, 1-58 (2016). doi: 10.1016/j.physrep.2016.07.007http://doi.org/10.1016/j.physrep.2016.07.007
J.Y. Chen, J.F. Tong, Z.L. Hu et al., Evaluation of neutron beam characteristics for D-BNCT01 facility. Nucl. Sci. Tech. 33, 12 (2022). doi: 10.1007/s41365-022-00996-1http://doi.org/10.1007/s41365-022-00996-1
J.M. Carpenter, The development of compact neutron sources. Nat. Rev. Phys. 1, 177-179 (2019). doi: 10.1038/s42254-019-0024-8http://doi.org/10.1038/s42254-019-0024-8
X.W. Zhu, C. Marchand, O. Piquet et al., High-frequency structure design and RF stability analysis of a 4-vane radio frequency quadrupole with pi-mode stabilizer loops. Nucl. Sci. Tech. 33, 34 (2022). doi: 10.1007/s41365-022-01013-1http://doi.org/10.1007/s41365-022-01013-1
Z.C. Gao, L. Lu, C.C. Xing et al., Design of a 200-MHz continuous-wave radio frequency quadrupole accelerator for boron neutron capture therapy. Nucl. Sci. Tech. 32, 23 (2021). doi: 10.1007/s41365-021-00859-1http://doi.org/10.1007/s41365-021-00859-1
A. Radulescu, E. Kentzinger, J. Stellbrink et al., KWS-3: the new (very) small-angle neutron scattering instrument based on focusing-mirror optics. Neutron News 16(2), 18-21 (2005).doi: 10.1080/10448630500454270http://doi.org/10.1080/10448630500454270
S. Takeda, Y. Yamagata, N.L. Yamada et al., Development of a large plano-elliptical neutron-focusing supermirror with metallic substrates. Opt. Express 24(12), 12478-12488 (2016). doi: 10.1364/OE.24.012478http://doi.org/10.1364/OE.24.012478
T. Hosobata, N.L. Yamada, M. Hino et al., Elliptic neutron-focusing supermirror for illuminating small samples in neutron reflectometry. Opt. Express 27(19), 26807-26820 (2019). doi: 10.1364/OE.27.026807http://doi.org/10.1364/OE.27.026807
D. Liu, B. Khaykovich, M.V. Gubarev et al., Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors. Nat. Commun. 4, 1-5 (2013). doi: 10.1038/ncomms3556http://doi.org/10.1038/ncomms3556
H. Wu, Y. Yang, D.S. Hussey et al., Study of a nested neutron-focusing supermirror system for small-angle neutron scattering. Nucl. Instrum. Methods Phys. Res. Sect. A 940, 380-386 (2019). doi: 10.1016/j.nima.2019.06.054http://doi.org/10.1016/j.nima.2019.06.054
H. Wu, Z. Wang, Y. Zhang et al., Demonstration of small-angle neutron scattering measurements with a nested neutron-focusing supermirror assembly. Nucl. Instrum. Methods Phys. Res. Sect. A 972, 164072 (2020). doi: 10.1016/j.nima.2020.164072http://doi.org/10.1016/j.nima.2020.164072
Y. Yang, R. Qi, Z. Zhang et al., Ni-Ti supermirror coated onto a curved substrate for nested neutron-focusing optics. Nucl. Instrum. Methods Phys. Res. Sect. A 986, 164752 (2021). doi: 10.1016/j.nima.2020.164752http://doi.org/10.1016/j.nima.2020.164752
H. Wu, W. Hong, Y. Zhang et al., Conceptual design of the grazing-incidence focusing small-angle neutron scattering (gif-SANS) instrument at CPHS. J. Neutron Res. 23, 201-205 (2021). doi: 10.3233/JNR-210008http://doi.org/10.3233/JNR-210008
D. Liu, D. Hussey, M.V. Gubarev et al., Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors. Appl. Phys. Lett. 102, 183508 (2013). doi: 10.1063/1.4804178http://doi.org/10.1063/1.4804178
H. Wu, B. Khaykovich, X. Wang et al., Wolter mirrors for neutron imaging. Phys. Procedia 88, 184-189 (2017). doi: 10.1016/j.phpro.2017.06.025http://doi.org/10.1016/j.phpro.2017.06.025
D.S. Hussey, H. Wen, H. Wu et al., Demonstration of focusing Wolter mirrors for neutron phase and magnetic imaging. J. Imaging 4(3), 50 (2018). doi: 10.3390/jimaging4030050http://doi.org/10.3390/jimaging4030050
F. Mezei, Novel polarized neutron devices: Supermirror and spin component amplifier. Commun. Phys. 1, 81-85 (1976)
F. Mezei, P.A. Dagleish, Corrigendum and first experimental evidence on neutron supermirrors. Commun. Phys. 2, 41-43 (1977)
J.B. Hayter, H.A. Mook, Discrete thin-film multilayer design for X-ray and neutron supermirrors. J. Appl. Cryst. 22, 35-41 (1989). doi: 10.1107/S0021889888010003http://doi.org/10.1107/S0021889888010003
K.D. Joensen, P. Voutov, A. Szentgyorgyi et al., Design of grazing-incidence multilayer supermirrors for hard-x-ray reflectors. Appl. Opt. 34, 7935-7944 (1995). doi: 10.1364/AO.34.007935http://doi.org/10.1364/AO.34.007935
N.K. Pleshanov, Aglotithm for the real-structure design of neutron supermirrors. Nucl. Instrum. Methods Phys. Res. A 524, 273-286 (2004). doi: 10.1016/j.nima.2004.02.009http://doi.org/10.1016/j.nima.2004.02.009
A.G. Gukasov, V.A. Ruban, M.N. Bedrizova, Interference magnification of the region of specular reflection of neutrons by multilayer quasimosaic structures. Sov. Tech. Phys. Lett. 3, 52-53 (1977)
A.G. Gukasov, V.A. Ruban, M.N. Bedrizova, U.S.S.R. Patent No.604441, 1981
J. Schelten, K. Mika, Calculated reflectivities of supermirrors. Nucl. Instrum. Methods 160, 287-294 (1979). doi: 10.1016/0029-554X(79)90605-0http://doi.org/10.1016/0029-554X(79)90605-0
I. Carron, V. Ignatovich, Algorithm for preparation of multilayer systems with high critical angle of total reflection. Phys. Rev. A 67, 043610 (2003). doi: 10.1103/PhysRevA.67.043610http://doi.org/10.1103/PhysRevA.67.043610
S. Masalovich, Analysis and design of multilayer structures for neutron monochromators and supermirrors. Nucl. Instrum. Methods Phys. Res. A 722, 71-81 (2013). doi: 10.1016/j.nima.2013.04.051http://doi.org/10.1016/j.nima.2013.04.051
S. Yamada, T. Ebisawa, N. Achiwa et al., Neutron-optical properties of multilayer system. Annu. Rep. Res. React. Inst. (Kyoto Univ.), 11, 8-27 (1978).
T. Ebisawa, N. Achiwa, S. Yamada et al., Neutron reflectivities of Ni-Mn and Ni-Ti multilayers for monochromators and supermirrors. J. Nucl. Sci. Technol. 16, 647-659 (1979).
K.D. Joensen, F.E. Christensen, H.W. Schnopper et al., Medium-sized grazing incidence high-energy X-ray Telescopes employing continuously graded multilayers. X-Ray Detect. Phys. Appl. 1736, 239-248 (1993). doi: 10.1117/12.140479http://doi.org/10.1117/12.140479
N. Bishop, J. Walker, C.T. DeRoo et al., Thickness distribution of sputtered films on curved substrates for adjustable x-ray optics. J. Astron. Telesc. Instrum. Syst. 5(2), 021005 (2019). doi: 10.1117/1.JATIS.5.2.021005http://doi.org/10.1117/1.JATIS.5.2.021005
C. Liu, M. Kong, C. Guo et al., Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems. Opt. Express 20(21), 23790-23797 (2012). doi: 10.1364/OE.20.023790http://doi.org/10.1364/OE.20.023790
Z. Zhang, R. Qi, Y. Yao et al., Improving thickness uniformity of Mo/Si multilayers on curved spherical substrates by a masking technique. Coatings 9(12), 851 (2019). doi: 10.3390/coatings9120851http://doi.org/10.3390/coatings9120851
D.L. Windt, JrR. Conley, Two-dimensional differential deposition: figure correction of thin-shell mirror substrates for x-ray astronomy, in Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 96031H, San Diego, 9-13 August 2015, ed. by S.L. O’Dell, G. Pareschi. doi: 10.1117/12.2188135http://doi.org/10.1117/12.2188135
C. Atkins, K. Kilaru, B.D. Ramsey et al., Differential deposition correction of segmented glass x-ray optics, in Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 96031H, San Diego, 9-13 August 2015, ed. by S.L. O’Dell, G. Pareschi. doi: 10.1117/12.2189933http://doi.org/10.1117/12.2189933
K. Kilaru, C. Atkins, B.D. Ramsey et al., Progress in differential deposition for improving the figures of full-shell astronomical grazing incidence x-ray optics, in Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 96031H, San Diego, 9-13 August 2015, ed. by S.L. O’Dell, G. Pareschi. doi: 10.1117/12.2189929http://doi.org/10.1117/12.2189929
B.L. Zhu, X.Q. Ge, S.H. Wang et al., Activation and pumping characteristics of Ti-Zr-V films deposited on narrow tubes. Nucl. Sci. Tech. 32, 50 (2021). doi: 10.1007/s41365-021-00880-4http://doi.org/10.1007/s41365-021-00880-4
V.F. Sears, Theory of multilayer neutron monochromators. Acta Cryst. A39, 601-608 (1983). doi: 10.1107/S0108767383001269http://doi.org/10.1107/S0108767383001269
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution