1.School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
zfjqinh@163.com
*liuhq@sdut.edu.cn;
Scan for full text
Zhi-Wei Lü, Gong-Xiang Wei, Han-Qiu Wang, et al. New flexible CsPbBr3-based scintillator for X-ray tomography. [J]. Nuclear Science and Techniques 33(8):98(2022)
Zhi-Wei Lü, Gong-Xiang Wei, Han-Qiu Wang, et al. New flexible CsPbBr3-based scintillator for X-ray tomography. [J]. Nuclear Science and Techniques 33(8):98(2022) DOI: 10.1007/s41365-022-01085-z.
The evolution of lead halide perovskites used for X-ray imaging scintillators has been facilitated by the development of solution-processable semiconductors characterized by large-area, flexible, fast photoresponse. The stability and durability of these new perovskites are insufficient to achieve extended computed tomography scanning times with hard X-rays. In this study, we fabricated a self-assembled CsPbBr,3,-based scintillator film with a flexible large-area uniform thickness using a new room-temperature solution-processable method. The sensitivity and responsivity of X-ray photon conversion were quantitatively measured and showed a good linear response relationship suitable for X-ray imaging. We also demonstrated, for the first time, that the self-assembled CsPbBr,3,-based scintillator has good stability for hard X-ray microtomography. Therefore, such an inexpensive solution-processed semiconductor easily prepared at room temperature can be used as a hard X-ray scintillator and equipped with flexible CsPbBr,3,-based X-ray detectors. It has great potential in three-dimensional high-resolution phase-contrast X-ray-imaging applications in biomedicine and material science because of its heavy Pb and Br atoms.
X-ray scintillatorX-ray illuminationComputed tomographyCsPbBr3-based film perovskiteSolution-processable semiconductor
V. Cnudde, M.N. Boone, High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 123, 1-17 (2013). doi: 10.1016/j.earscirev.2013.04.003http://doi.org/10.1016/j.earscirev.2013.04.003
M. Dierolf, A. Menzel, P. Thibault et al., Ptychographic X-ray computed tomography at the nanoscale. Nature. 467, 436-439 (2010). doi: 10.1038/nature09419http://doi.org/10.1038/nature09419
E. Maire, P.J. Withers, Quantitative X-ray tomography, Int. Mater. Rev. 59, 1-43 (2013). doi: 10.1179/1743280413y.0000000023http://doi.org/10.1179/1743280413y.0000000023
S.W. Wilkins, T.E. Gureyev, D. Gao et al., Phase-contrast imaging using polychromatic hard X-rays. Nature. 384, 335-338 (1996). doi: 10.1038/384335a0http://doi.org/10.1038/384335a0
L. Vásárhelyi, Z. Kónya, Á. Kukovecz et al., Microcomputed tomography-based characterization of advanced materials: a review. Mater. Today Adv. 8, (2020). doi: 10.1016/j.mtadv.2020.100084http://doi.org/10.1016/j.mtadv.2020.100084
M. Nikl, A. Yoshikawa, Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Advanced Optical Materials, 3, 463-481 (2015). doi: 10.1002/adom.201400571http://doi.org/10.1002/adom.201400571
S. Liu, X. Feng, Z. Zhou et al., Effect of Mg2+ co-doping on the scintillation performance of LuAG:Ce ceramics. Phys. Status Solidi RRL, 8, 105-109 (2014). doi: 10.1002/pssr.201308199http://doi.org/10.1002/pssr.201308199
C. Michail, I. Valais, I. Seferis et al., Measurement of the luminescence properties of Gd2O2S:Pr, Ce, F powder scintillators under X-ray radiation. Radiat. Meas. 70, 59-64 (2014). doi: 10.1016/j.radmeas.2014.09.008http://doi.org/10.1016/j.radmeas.2014.09.008
M.J. Weber, Inorganic scintillators: today and tomorrow. J. Lumin. 100, 35-45 (2002). doi: 10.1016/s0022-2313(02)00423-4http://doi.org/10.1016/s0022-2313(02)00423-4
V. Thakur, A. Jain, P. Ashokkumar et al., Design and development of a plastic scintillator based whole body β/γ contamination monitoring system. Nucl. Sci. Tech. 32, 47 (2021) doi: 10.1007/s41365-021-00883-1http://doi.org/10.1007/s41365-021-00883-1
H. Liu, Y. Cheng, Z. Zuo et al., Discrimination of neutrons and gamma-rays in plastic scintillator based on pulse coupled neural network. Nucl. Sci. Tech. 32, 82 (2021) doi: 10.1007/s41365-021-00915-whttp://doi.org/10.1007/s41365-021-00915-w
P. Ghorbani, D. Sardari, R. Azimirad et al., Experimental study of a large plastic scintillator response with different reflective coverings based on digital pulse processing method. J. Radioanal. Nucl. Chem. 321, 481-488 (2019). doi: 10.1007/s10967-019-06596-5http://doi.org/10.1007/s10967-019-06596-5
X.L. Qian, H.Y. Sun, C. Liu et al., Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment. Nucl. Sci. Tech. 32, 51 (2021) doi: 10.1007/s41365-021-00882-2http://doi.org/10.1007/s41365-021-00882-2
A. Magi, M. Koshimizu, Y. Fujimoto et al., Development of plastic scintillators containing a phosphor with aggregation-induced emission properties. Radiat. Meas. 137, 10641 (2020). doi: 10.1016/j.radmeas.2020.106401http://doi.org/10.1016/j.radmeas.2020.106401
G. Ros, G. Sáez-Cano, G.A. Medina-Tanco et al., On the design of experiments based on plastic scintillators using GEANT4 simulations. Radiat. Phys. Chem. 153, 140-151 (2018). doi: 10.1016/j.radphyschem.2018.09.021http://doi.org/10.1016/j.radphyschem.2018.09.021
Zi. Li, Y. Zhang, G. Cao, et al. Event vertex and time reconstruction in large volume liquid scintillator detectors. Nucl. Sci. Tech. 32, 49 (2021) doi: 10.1007/s41365-021-00885-zhttp://doi.org/10.1007/s41365-021-00885-z.
S.M. Carturan, F. Pino, C.L. Fontana et al., Temperature effects on light yield and pulse shape discrimination capability of siloxane based scintillators. Eur. Phys. J. C 80, 1057 (2020). doi: 10.1140/epjc/s10052-020-08640-1http://doi.org/10.1140/epjc/s10052-020-08640-1
N.K. Desai, P.G. Mahajan, A.S. Kumbhar, et al., Nanoporous p-terphenyl-polystyrene films containing perylene; fabrication, characterization and remarkable fluorescence resonance energy transfer based blue emitting properties. J. Mater. Sci. Mater. Electron. 27, 1118-1129 (2015). doi: 10.1007/s10854-015-3860-zhttp://doi.org/10.1007/s10854-015-3860-z
C. Aberle, C. Buck, B. Gramlich, et al., Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection. J. Instrum, 7, P06008 (2012). doi: 10.1088/1748-0221/7/06/p06008http://doi.org/10.1088/1748-0221/7/06/p06008
Y. Wu, G. Ren, F. Meng, et al., Effects of Bi3+ codoping on the optical and scintillation properties of CsI:Tl single crystals. Phys. Status Solidi A. 211, 2586-2591 (2014). doi: 10.1002/pssa.201431299http://doi.org/10.1002/pssa.201431299
P. Zhang, B. Jiang, Y. Jiang et al., YAG/Nd:LuAG composite laser materials prepared by the ceramization of YAG single crystals. J. Eur. Ceram. Soc. 38, 1966-1971 (2018). doi: 10.1016/j.jeurceramsoc.2017.12.013http://doi.org/10.1016/j.jeurceramsoc.2017.12.013
H. Pan, Q. Liu, X. Chen et al., Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Opt. Mater. 105, 109909 (2020). doi: 10.1016/j.optmat.2020.109909http://doi.org/10.1016/j.optmat.2020.109909
Y. Zhang, R. Sun, X. Ou et al., Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano. 13, 2520-2525 (2019). doi: 10.1021/acsnano.8b09484http://doi.org/10.1021/acsnano.8b09484
Q. Chen, J. Wu, X. Ou et al., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). doi: 10.1038/s41586-018-0451-1http://doi.org/10.1038/s41586-018-0451-1
Y.C. Kim, K.H. Kim, D.Y. Son et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87-91 (2017). doi: 10.1038/nature24032http://doi.org/10.1038/nature24032
Q.A. Akkerman, V. D'Innocenzo, S. Accornero et al., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 137, 10276-10281 (2015). doi: 10.1021/jacs.5b05602http://doi.org/10.1021/jacs.5b05602
Y. Wang, X. Li, S. Sreejith et al., Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv. Mater, 28, 10637-10643 (2016). doi: 10.1002/adma.201604110http://doi.org/10.1002/adma.201604110
W. Wei, Y. Zhang, Q. Xu et al., Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315-321 (2017). doi: 10.1038/nphoton.2017.43http://doi.org/10.1038/nphoton.2017.43
J. Glodo, Y. Wang, R. Shawgo et al., New developments in scintillators for security applications. Phys. Procedia. 90, 285-290 (2017). doi: 10.1016/j.phpro.2017.09.012http://doi.org/10.1016/j.phpro.2017.09.012
X. Ji, H. Liu, Y. Xing et al., Quantitative evaluation on 3D fetus morphology via X‐ray grating based imaging technique. Int. J. Imaging. Syst. Technol. 29, 677-685 (2019). doi: 10.1002/ima.22354http://doi.org/10.1002/ima.22354
Y. Bekenstein, B.A. Koscher, S.W. Eaton et al., Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008-16011(2015). doi: 10.1021/jacs.5b11199http://doi.org/10.1021/jacs.5b11199
J. Song, J. Li, X. Li et al., Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162-7167 (2015). doi: 10.1002/adma.201502567http://doi.org/10.1002/adma.201502567
Q.A. Akkerman, S.G. Motti, A.R. Srimath Kandada et al., Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010-1016 (2016). doi: 10.1021/jacs.5b12124http://doi.org/10.1021/jacs.5b12124
S. Sun, D. Yuan, Y. Xu et al., Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano. 10, 3648-3657 (2016). doi: 10.1021/acsnano.5b08193http://doi.org/10.1021/acsnano.5b08193
X. Zhang, X. Bai, H. Wu, et al., Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew Chem. Int. Ed. Engl. 57, 3337-3342 (2018). doi: 10.1002/anie.201710869http://doi.org/10.1002/anie.201710869
J. Shamsi, Z. Dang, P. Bianchini et al., Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240-7243 (2016). doi: 10.1021/jacs.6b03166http://doi.org/10.1021/jacs.6b03166
G. Lovric, S.F. Barre, J.C. Schittny et al., Dose optimization approach to fast X-ray microtomography of the lung alveoli. J. Appl. Crystallogr. 46, 856-860 (2013). doi: 10.1107/S0021889813005591http://doi.org/10.1107/S0021889813005591
H. Liu, F. Lin, J. Lin et al., Phase-retrieval-based synchrotron X-ray micro-tomography for 3D structural characterization and quantitative analysis of agalloch eaglewood. Wod. Sci. Technol. 52, 839-854 (2018). doi: 10.1007/s00226-018-1004-3http://doi.org/10.1007/s00226-018-1004-3
H. Liu, X. Wu, T. Xiao, Optimization of reconstructed quality of hard x-ray phase microtomography, Appl. Opt. 54, 5610-5618 (2015). doi: 10.1364/AO.54.005610http://doi.org/10.1364/AO.54.005610
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution