1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Spallation Neutron Source Science Center, Dongguan 523803, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
*wubin@ihep.ac.cn;
lixiao@ihep.ac.cn
Scan for full text
Bin Wu, Xiao Li, Zhun Li, et al. Development of a large nanocrystalline soft magnetic alloy core with high
Bin Wu, Xiao Li, Zhun Li, et al. Development of a large nanocrystalline soft magnetic alloy core with high
A waterproof nanocrystalline soft magnetic alloy (MA) core with a size of O.D.850 mm×I.D.316 mm×H.25 mm for radio frequency (RF) acceleration was successfully developed by winding 18 μm 1k107b MA ribbons. The ,, products reached 7.5, 10, and 12 GHz at 1, 3, and 5 MHz respectively. The ,, products of the MA core (O.D.250 mm×I.D.100 mm×H.25 mm) manufactured using a 13 μm MA ribbon further increased by 30%. Detailed improvements on the MA core manufacture process are discussed herein. Continuous high-power tests on the new MA cores demonstrated its good performance of waterproofness, particularly its stability of high ,, products. The MA core with high ,, product and large size can operate under a high average RF power, high electric field, and in deionized water, which will be used in the China Spallation Neutron Source Phase II (CSNS-II).
Large size magnetic alloy coreHigh insulation and low stress coatingWaterproof structureTransverse magnetic field annealingHigh power MA loaded cavity
K. Suzuki, A. Makino, A. Inoue et al., Soft magnetic properties of nanocrystalline bcc Fe‐Zr‐B and Fe‐M‐B‐Cu (M=transition metal) alloys with high saturation magnetization (invited). J. Appl. Phys. 70(10), 6232-6237 (1991). doi: 10.1063/1.350006http://doi.org/10.1063/1.350006
Y.H. Lv, J. Zhang, B. Li et al., Mössbauer spectroscopy studies on the particle size distribution effect of Fe-B-P amorphous alloy on the microwave absorption properties. Nucl. Sci. Tech. 31(3), 24(2020). doi: 10.1007/s41365-020-0734-8http://doi.org/10.1007/s41365-020-0734-8.
M. Yamamoto, K. Hasegawa, M. Yoshii et al., High power test of MA cavity for J-PARC RCS. 2007 IEEE Particle Accelerator Conference (PAC). 1532-1534 (2007). doi: 10.1109/PAC.2007.4440813http://doi.org/10.1109/PAC.2007.4440813
T. Trupp, NANOPERM broad band magnetic alloy cores for synchrotron RF systems. IPAC (2014). doi: 10.18429/JACoW-IPAC2014-MOPRO016http://doi.org/10.18429/JACoW-IPAC2014-MOPRO016
B. Wu, H. Sun, X. Li et al., Higher harmonic voltage analysis of magnetic-alloy cavity for CSNS/RCS upgrade project. Radiat Detect Technol Methods 4, 293-302 (2020). doi: 10.1007/s41605-020-00183-zhttp://doi.org/10.1007/s41605-020-00183-z
T. Uesugi, Y. Mori, C. Ohmori et al., Direct-cooling MA cavity for J-PARC synchrotrons. Proceedings of the 2003 Particle Accelerator Conference, pp. 1234-1236 (2003). doi: 10.1109/PAC.2003.1289663http://doi.org/10.1109/PAC.2003.1289663
C. Ohmori, E. Ezura, K. Hara et al., Development of a high gradient rf system using a nanocrystalline soft magnetic alloy. Phys. Rev. ST Acc. Beams, 16(11), 112002 (2013). doi: 10.1103/physrevstab.16.112002http://doi.org/10.1103/physrevstab.16.112002
M. Nomura, M. Yamamoto, A. Schnase et al., The origin of magnetic alloy core buckling in J-PARC 3GeV RCS. Nucl. Instrum. Meth. A 623(3), 903-909 (2010). doi: 10.1016/j.nima.2010.08.111http://doi.org/10.1016/j.nima.2010.08.111
R.K. Nutor, X. Fan, S. Ren et al., Research progress of stress-induced magnetic anisotropy in Fe-based amorphous and nanocrystalline alloys. J. Electromagnetic Anal. App. 09(4), 53-72 (2017). doi: 10.4236/jemaa.2017.94006http://doi.org/10.4236/jemaa.2017.94006
P. Hulsmann, G. Hutter, W. Vinzenz, The bunch compressor system for SIS18 AT GSI. Proceedings of EPAC2004, Lucerne, Switzerland. pp. 1165-1167 (2004).
X. Zhou, S. Li, J. Li et al., Preparation of special silicon steel grade MgO from hydromagnesite. J. University of Science and Technology Beijing, Mineral, Metallurgy, Material. 14(3), 225-230 (2007). doi: 10.1016/S1005-8850(07)60043-7http://doi.org/10.1016/S1005-8850(07)60043-7
J.M. Choi, H.E. Kim, I.S. Lee, Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21(5), 469-473 (2000). doi: 10.1016/S0142-9612(99)00186-6http://doi.org/10.1016/S0142-9612(99)00186-6
K. Sato, H. Kaya, O. Funayama et al, Evaluation of polysilazanes-perhydropolysilazane, polyborosilazane and methylhy-dropolysilazane as matrix precursors of ceramic-matrix composites. J. Ceram. Soc. Jpn. 109, 440-446 (2001). doi: 10.2109/jcersj.109.1269_440http://doi.org/10.2109/jcersj.109.1269_440
S.H. Lim, Y.S. Choi, Effects of surface coating by sol-gel process on the magnetic properties of a Co-based amorphous alloy. Magnetics IEEE Transactions on, 1995, 31(6):3898-3900. doi: 10.1109/20.489809http://doi.org/10.1109/20.489809
Y. Morita, T. Kageyama, Development of medium-frequency cavity loaded with multi-ring magnetic alloy cores cooled by chemically inert liquid. Nucl. Instrum. Meth. A 1010, 165525 (2021). doi: 10.1016/j.nima.2021.165525http://doi.org/10.1016/j.nima.2021.165525
Y. Morita, T. Kageyama, M. Akoshima et al., Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core. Nucl. Instrum. Meth. A 728, 23-30 (2013). doi: 10.1016/j.nima.2013.05.177http://doi.org/10.1016/j.nima.2013.05.177
K. Wang, Z. Xu, P. Jin et al., Design of the deceleration magnetic alloy cavity for a high-intensity heavy-ion accelerator facility Spectrometer Ring. Nucl. Instrum. Meth. A 1005, 165364 (2021). doi: 10.1016/j.nima.2021.165364http://doi.org/10.1016/j.nima.2021.165364
M. Nomura, A. Schnase, T. Shimada et al., A convenient way to find an electrical insulation break of MA cores in J-PARC synchrotrons. Nucl. Instrum. Meth. A 668, 83-87 (2011). doi: 10.1016/j.nima.2011.11.092http://doi.org/10.1016/j.nima.2011.11.092
J. He, K.Y. He, L.Z. Cheng et al., The influence of pre-annealing treatment on the exothermic behavior and magnetic properties of Fe73.5Cu1Nb3Si13.5B9 alloy. J. Magnetism Magnetic Materials 208, 44-48 (2000). doi: 10.1016/S0304-8853(99)00550-8http://doi.org/10.1016/S0304-8853(99)00550-8
M. Nomura, T. Shimada, F. Tamura et al., Mechanisms of increasing of the magnetic alloy core shunt impedance by applying a transverse magnetic field during annealing. Nucl. Instrum. Meth. A 797, 196-200 (2015). doi: 10.1016/j.nima.2015.06.061http://doi.org/10.1016/j.nima.2015.06.061
M. Nomura, T. Shimada, F. Tamura et al., Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons. Nucl. Instrum. Meth. A 749, 84-89 (2014). doi: 10.1016/j.nima.2014.02.041http://doi.org/10.1016/j.nima.2014.02.041
E. Ezura, M. Nomura, K. Hasegawa et al., Condition of MA Cores in the RF cavities of J-PARC synchrotrons after several years of operation. Proceedings of IPAC’10, Kyoto, Japan. THPEA022, 3723-3725 (2010).
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution