1.School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
2.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044, China
3.Jiangsu International Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, Nanjing University of Information Science & Technology, Nanjing 210044, China
*xagth@126.com
Scan for full text
Ai-Gen Xie, Yi-Fan Liu, Hong-Jie Dong. Secondary electron emission model for photo-emission from metals in the vacuum ultraviolet. [J]. Nuclear Science and Techniques 33(8):103(2022)
Ai-Gen Xie, Yi-Fan Liu, Hong-Jie Dong. Secondary electron emission model for photo-emission from metals in the vacuum ultraviolet. [J]. Nuclear Science and Techniques 33(8):103(2022) DOI: 10.1007/s41365-022-01088-w.
This study investigates two secondary electron emission (SEE) models for photoelectric energy distribution curves ,f,(,E,ph, h,γ,),B,E,mean, absolute quantum efficiency (,AQE,), and the mean escape depth of photo-emitted electrons ,λ, of metals. The proposed models are developed from the density of states and the theories of photo-emission in the vacuum ultraviolet and SEE, where ,B, is the mean probability that an internal photo-emitted electron escapes into vacuum upon reaching the emission surface of the metal, and ,E,mean, is the mean energy of photo-emitted electrons measured from vacuum. The formulas for ,f,(,E,ph, h,γ,),B,λ, E,mean, and ,AQE, that were obtained were shown to be correct for the cases of Au at h,γ, = 8.1-11.6 eV, Ni at h,γ, = 9.2-11.6 eV, and Cu at h,γ, = 7.7-11.6 eV. The photoelectric cross-sections (PCS) calculated here are analyzed, and it was confirmed that the calculated PCS of the electrons in the conduction band of Au at h,γ, = 8.1-11.6 eV, Ni at h,γ, = 9.2-11.6 eV, and Cu at h,γ, = 7.7-11.6 eV are correct.
Absolute quantum efficiencyPhotoelectric cross-sectionMean escape depth of photo-emitted electronsProbabilityPhoto-emission from metalsSecondary electron emissionVacuum ultravioletMean energy of photo-emitted electrons
X. D. Su, G. L. Zhang, S. P. Xu et al., Attenuation coefficients of gamma and X-rays passing through six materials. Nucl. Sci. Tech. 31, 3 (2020).doi: 10.1007/s41365-019-0717-9http://doi.org/10.1007/s41365-019-0717-9
B. Lv, Y. Liu, W. Wu et al., Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure. Nat. Commun. 13, 1835 (2022). doi: 10.1038/s41467-022-29455-6http://doi.org/10.1038/s41467-022-29455-6
H. W. Yu, Y. X. Zhang, X. H. Chen, et al., Numerical simulation and method study of X-ray litho-density logging. Nucl. Sci. Tech. 31(12), 124. (2020). doi: 10.1007/s41365-020-00826-2http://doi.org/10.1007/s41365-020-00826-2
D. Y. Lin, Y. T. Shih, W. C. Tseng et al., Influence of Mn, Fe, Co, and Cu Doping on the Photoelectric Properties of 1T HfS 2 Crystals. Materials 15, 173 (2022). doi: 10.3390/ma15010173http://doi.org/10.3390/ma15010173
Y. Lei, B. Du, P. Du, et al., The effects of Se/S ratio on the photoelectric properties of nitrogen -doped graphene quantum dots decorated CdSxSe1-x composites. Ceram. Int. 48, 5280-5288 (2022). doi: 10.1016/j.ceramint.2021.11.071http://doi.org/10.1016/j.ceramint.2021.11.071
J. Cazaux, Correlation between the X-ray induced and the electron-induced electron emission yields of insulators. J. Appl. Phys. 89, 8265-8272 (2001). doi: 10.1063/1.1368867http://doi.org/10.1063/1.1368867
J. Cazaux, Electron and X-ray-induced electron emissions from insulators. Polym. Int. 50, 748-755 (2001). doi: 10.1002/pi.650http://doi.org/10.1002/pi.650
Y. Zhang, J. Zhao, H. Wang, et al., Single-atom Cu anchored catalysts for photocatalytic renewable H 2 production with a quantum efficiency of 56. Nat. Commun. 13, 58 (2022). doi: 10.1038/s41467-021-27698-3http://doi.org/10.1038/s41467-021-27698-3
N. Q. Cai, G. Q. Zhang, C. B. Fu, et al. Populating 229mTh via two-photon electronic bridge mechanism. Nucl. Sci. Tech. 32(6), 59 (2021). doi: 10.1007/s41365-021-00900-3http://doi.org/10.1007/s41365-021-00900-3
R. Jiang, X. Wu, H. Liu et al., High-Performance Orange-Red Organic Light-Emitting Diodes with External Quantum Efficiencies Reaching 33.5% based on Carbonyl-Containing Delayed Fluorescence Molecules. Adv. Sci. 9, 2104435 (2022). doi: 10.1002/advs.202104435http://doi.org/10.1002/advs.202104435
H. Mayer, R. Nossek, Die entwicklung der leitfahigkeit und des ausseren lichtelektrischen effektes beim ubergang vom eibzelatom zum kompakten metall. Z. Physik. 138, 353-362 (1954). doi: 10.1007/BF01340681http://doi.org/10.1007/BF01340681
H. Mayer, R. Nossek, H. Thomas, Le libre parcours moyen des électrons de conductibilité et des électrons photoélectriques mesuré au moyen de la méthode des couches minces. J. Phys. Radium. 17, 204-209 (1956). doi: 10.1051/jphysrad:01956001703020400http://doi.org/10.1051/jphysrad:01956001703020400
Photoemissive Materials: Preparation, Properties, Uses, 1th edition, edited by Sommer A. H., published by John Wiley and Sons, Inc (1968), pages 38-58.
F. Salvat, L. Barjuan, P. Andreo, Inelastic collisions of fast charged particles with atoms: Bethe asymptotic formulas and shell corrections. Phys. Rev. A 105(4), 042813 (2022). doi: 10.1103/PhysRevA.105.042813http://doi.org/10.1103/PhysRevA.105.042813
S. Biswas, B. Förg, L. Ortmann et al., Probing molecular environment through photoemission delays. Nat. Phys. 16(7), 1-6 (2020). doi: 10.1038/s41567-020-0887-8http://doi.org/10.1038/s41567-020-0887-8
H. J. Liu, J. C. Wang, D. Y. Cho et al., Giant photoresponse in quantized SrRuO3 monolayer at oxide interfaces. ACS. Photonics. 5, 1041-1049 (2018). doi: 10.1021/acsphotonics.7b01339http://doi.org/10.1021/acsphotonics.7b01339
D. Sier, G. P. Cousland, R. M. Trevorah, et al., High accuracy determination of photoelectric cross sections, X-ray absorption fine structure and nanostructure analysis of zinc selenide using the X-ray extended range technique. J. Synchrotron. Rad. 27, 1262-1277 (2020). doi: 10.1107/S1600577520010097http://doi.org/10.1107/S1600577520010097
R. Prasad, Total photon-absorption cross-section measurements at 52.4, 60, 72.2, and 84.4 keV in Al, Fe, Mo, Ag, W, and Pt: Photoelectric cross sections deduced. Phys. Rev. A. 18(5), 2167-2169 (1978). doi: 10.1103/PhysRevA.18.2167http://doi.org/10.1103/PhysRevA.18.2167
M. C. Han, H. S. Kim, M. G. Pia, et al., Validation of cross sections for Monte Carlo simulation of the photoelectric effect. IEEE. T. Nucl. Sci. 63(2), 1117-1146 (2016). doi: 10.1109/TNS.2016.2521876http://doi.org/10.1109/TNS.2016.2521876
W. F. Krolikowski, W. E. Spicer, Photoemission studies of the noble metals. II. Gold. Phys. Rev. B. 1(2): 478, (1970). doi: 10.1103/PhysRevB.1.478http://doi.org/10.1103/PhysRevB.1.478
Jr.A. J. Blodgett, W. E. Spicer, Experimental determination of the density of states in nickel. Phys. Rev. 146, 390-402 (1966). doi: 10.1103/PhysRev.146.390http://doi.org/10.1103/PhysRev.146.390
R. U. Martinelli, Secondary emission and photoemission from negative electron affinity GaP: Cs. J. Appl. Phys. 45, 3203-3204 (1974). doi: 10.1063/1.1663751http://doi.org/10.1063/1.1663751
D. G. Fisher, R. E. Enstrom, J. S. Escher, et al., Photoelectron surface escape probability of (Ga, In)As: Cs-O in the 0.9 to [inverted lazy s]1.6 μm range. J. Appl. Phys. 43, 3815-3823 (1972). doi: 10.1063/1.1661817http://doi.org/10.1063/1.1661817
R. U. Martinelli, M. Ettenberg, Electron transport and emission characteristics of negative electron affinity AlxGa1−x As alloys (0≤x≤0.3). J. Appl. Phys. 45, 3896-3898 (1974). doi: 10.1063/1.1663882http://doi.org/10.1063/1.1663882
W. F. Krolikowski, W. E. Spicer, Photoemission studies of the noble metals. I. Copper. Phys. Rev. 185, 882-900 (1969). doi: 10.1103/PhysRev.185.882http://doi.org/10.1103/PhysRev.185.882
Photon Optics, 1th edition, edited by Li G. C, published by National defense industry Press (2010), page 147.
D. H. Dowell, F. K. King, R. E. Kirby, et al., In situ cleaning of metal cathodes using a hydrogen ion beam. Phys. Rev. Spec. Top. Accel. Beams. 9, 063502 (2006). doi: 10.1103/PhysRevSTAB.9.063502http://doi.org/10.1103/PhysRevSTAB.9.063502
S. V. Nayak, N. M. Badiger, Measurement of K-shell photoelectric absorption parameters of Hf, Ta, Au, and Pb by an alternative method using a weak β-particle source. Phys. Rev. A 73(3), 032707-032707 (2006). doi: 10.1103/PhysRevA.73.032707http://doi.org/10.1103/PhysRevA.73.032707
K. S. Puttaswamy, R. Gowda, B. Sanjeevaiah, Photoelectric cross sections derived from the total absorption cross sections in the energy range 5-130 keV. Can. J. Phys. 57(1), 92-98 (1979). doi: 10.1139/p79-011http://doi.org/10.1139/p79-011
C.Y. Fong, M.L. Cohen, Energy Band Structure of Copper by the Empirical Pseudopotential Method. Phys. Rev. Lett. 24(7), 306-309 (1969). doi: 10.1103/PhysRevLett.24.306http://doi.org/10.1103/PhysRevLett.24.306
E. C. Snow, Self-Consistent Energy Bands of Metallic Copper by the Augmented-Plane-Wave Method. II. Phys. Rev. 157(3), 570-578 (1968). doi: 10.1103/PhysRev.171.785http://doi.org/10.1103/PhysRev.171.785
R. Shimizu, K. Goto, On the energy distribution of secondary electrons emitted from metals. J. Surf. Anal. 15(2), 186-194 (2008). doi: 10.1384/jsa.15.186http://doi.org/10.1384/jsa.15.186
M. S. Chung, Improved calculations of secondary electron energy distributions of metals. J. Appl. Phys. 46, 465 (1975). doi: 10.1063/1.321362http://doi.org/10.1063/1.321362
A. G. Xie, L. Wang, L. H. Mu, Formula for maximum secondary electron yield from metals. Surf. Rev. Lett. 22, 1550019 (2015). doi: 10.1142/S0218625X15500195http://doi.org/10.1142/S0218625X15500195
A. G. Xie, H. S. Uhm, Y. Y. Chen, et al. Maximum secondary electron yield and parameters of secondary electron yield of metals. Surf. Rev. Lett. 23, 1650039 (2016) doi: 10.1142/S0218625X16500396http://doi.org/10.1142/S0218625X16500396
P. A. Wolff, Theory of secondary electron cascade in metals. Phys. Rev. 95, 56 (1954). doi: 10.1103/PhysRev.95.56http://doi.org/10.1103/PhysRev.95.56
A. G. Xie, H. J. Dong, Z. Pan, An electron-induced secondary electron model for photoelectric sensitivity and quantum efficiency of metal surfaces. Results. Phys. 26, 104350 (2021). doi: 10.1016/j.rinp.2021.104350http://doi.org/10.1016/j.rinp.2021.104350
J. O. D. Williams, J. S. Lapington, S. A. Leach, et al., Using quantum entangled photons to measure the absolute photon detection efficiency of a multi-pixel SiPM array. Nucl. Instrum. Methods. Phys. Res. Sect. A 958, 8 (2020). doi: 10.1016/j.nima.2019.05.008http://doi.org/10.1016/j.nima.2019.05.008
W. Xu, X. Hou, Y. Meng, et al., Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of Multicarrier States in Single Colloidal Quantum Dots. Nano. Lett. 17, 7487-7493 (2017). doi: 10.1021/acs.nanolett.7b03399http://doi.org/10.1021/acs.nanolett.7b03399
H.M. Cobb, Dictionary of Metals, 1st edn. (ASM international, 2012), pp. 336-340
H. Seiler, Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54, R1 (1983). doi: 10.1063/1.332840http://doi.org/10.1063/1.332840
A. G. Xie, H. Y. Wu, J. Xu, Parameters of the secondary electron yield from metal. J. Korean. Phys. Soc. 62(5), 725-730 (2013). doi: 10.3938/jkps.62.725http://doi.org/10.3938/jkps.62.725
A. G. Xie, K. Zhon, D. L. Zhao, et al., Formulae for low-energy secondary electron yield from different kinds of emitters as a function of measurable variables. Mod. Phys. Lett. B31(10), 1750105 (2017). doi: 10.1142/S0217984917501056http://doi.org/10.1142/S0217984917501056
A. G. Xie, Y. J. Yao, J. Su, et al., A universal formula for secondary electron yield from metals. Nucl. Instrum. Methods. Res. Sect. B 268(17-18), 2565-2570 (2010). doi: 10.1016/j.nimb.2010.06.012http://doi.org/10.1016/j.nimb.2010.06.012
J. Llacer, E. L. Garwin, Electron-Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV. J. Appl. Phys. 40, 2766 (1969). doi: 10.1063/1.1658075http://doi.org/10.1063/1.1658075
A. G. Xie, H. J. Dong, Z. Pan, Electron-insulator interaction and secondary electron yield at any Kelvin temperature. Results. Phys. 28, 104554 (2021). doi: 10.1016/j.rinp.2021.104554http://doi.org/10.1016/j.rinp.2021.104554
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution