1.Heilongjiang Provincial Key Laboratory of Nuclear Power System & Equipment, Harbin Engineering University, Harbin 150001, China
2.China Nuclear Engineering Consulting Co., Ltd., Beijing 100073, China
bianhaozhi@hrbeu.edu.cn
*dingming@hrbeu.edu.cn;
Scan for full text
Wen-Tao Li, Xian-Ke Meng, Hao-Zhi Bian, et al. Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube. [J]. Nuclear Science and Techniques 33(8):100(2022)
Wen-Tao Li, Xian-Ke Meng, Hao-Zhi Bian, et al. Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube. [J]. Nuclear Science and Techniques 33(8):100(2022) DOI: 10.1007/s41365-022-01090-2.
In loss-of-coolant accidents (LOCAs), a passive containment heat removal system (PCS) protects the integrity of the containment by condensing steam. As a large amount of air exists in the containment, the steam condensation heat transfer can be significantly reduced. Based on previous research, traditional methods for enhancing pure steam condensation may not be applicable to steam-air condensation. In the present study, new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes, including corrugated tubes, spiral fin tubes, and ring fin tubes, were designed. STAR-CCM+ was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer. According to the calculations, the gas pressure ranged from 0.2 to 1.6 MPa, and air mass fraction ranged from 0.1 to 0.9. The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam-air condensation heat transfer. Further, the designed corrugated tube performed well at atmospheric pressure, with a maximum enhancement of 27.4%, and performed poorly at high pressures. In the design of spiral fin tubes, special attention should be paid to the locations that may accumulate high-concentration air. Nonetheless, the ring-fin tubes generally displayed good performance under all conditions of interest, with a maximum enhancement of 24.2%.
Air-steam condensationNumerical simulationHeat transfer enhancementFin tube
S. Sheykhi, S. Talebi, M Soroush et al., Thermal-hydraulic and stress analysis of AP1000 reactor containment during LOCA in dry cooling mode. Nucl. Sci. Tech. 28, 73 (2017). doi: 10.1007/s41365-017-0233-8http://doi.org/10.1007/s41365-017-0233-8
Y. Cheng, M. Zheng, Y. Wang et al., Study on the long-term passive cooling extension of AP1000 reactor. Nucl. Sci. Tech. 24, 040601 (2013). doi: 10.13538/j.1001-8042/nst.2013.04.013http://doi.org/10.13538/j.1001-8042/nst.2013.04.013
J. Rosa, A. Escrivá, L. Herranz, et al., Review on condensation on the containment structures. Prog Nucl Energ. 51(1), 32-66(2009). doi: 10.1016/j.pnucene.2008.01.003http://doi.org/10.1016/j.pnucene.2008.01.003
X. Han, M. Zheng, Y. Yang, Concept research on general passive system. Nucl. Power. Eng. 30(03), 115-118 (2009). (in Chinese)
S. Sheykhi, S. Talebi, Analysis of maximum pressure in VVER1000/V446 reactor containment for LOCA and MSLB. Nucl. Sci. Tech. 28, 132 (2017). doi: 10.1007/s41365-017-0288-6http://doi.org/10.1007/s41365-017-0288-6
G. Tang, H. Hu, `D. Niu et al., Advances in vapor drop wise condensation heat transfer. Chin. Sci. Bull. 65(17), 1653-1676(2020). doi: 10.1360/TB-2019-0577http://doi.org/10.1360/TB-2019-0577
L. Wu, H.J. Jia, X. Ma et al., Research on the effect of Reynolds correlation in natural convection film condensation. Nucl. Sci. Tech. 28, 85 (2017). doi: 10.1007/s41365-017-0240-9http://doi.org/10.1007/s41365-017-0240-9
C. Chantana, S. Kumar, Experimental and theoretical investigation of air-steam condensation in a vertical tube at low inlet steam fractions. Appl. Therm. Eng. 54(2), 399-412(2013). doi: 10.1016/j.applthermaleng.2013.02.024http://doi.org/10.1016/j.applthermaleng.2013.02.024
H. Bian, Z. Sun, M. Ding et al., Local phenomena analysis of steam condensation in the presence of air. Prog. Nucl. Energy. 101, 188-198 (2017). doi: 10.1016/j.pnucene.2017.08.002http://doi.org/10.1016/j.pnucene.2017.08.002
M. Joseph, G. Mathew, G. Krishnaraj et al., Numerical simulation of liquid-gas interface formation in long superhydrophobic microchannels with transverse ribs and grooves. Experimental and Computational Multiphase Flow. 2(3), 162-173 (2020). doi: 10.1007/s42757-022-0132-zhttp://doi.org/10.1007/s42757-022-0132-z
M. Murase, Y. Kataoka, T. Fujii, Evaporation and condensation heat transfer with a noncondensable gas present. Nucl. Eng. Des. 141(1-2), 135-143(1993). doi: 10.1016/0029-5493(93)90098-Thttp://doi.org/10.1016/0029-5493(93)90098-T
D. Othmer, The condensation of steam. Ind. Eng. Chem. 21, 577-583(1929).
S. Park, M. Kim, K. Yoo, Condensation of pure steam and steam-air mixture with surface waves of condensate film on a vertical wall. Int. J. Multiphase Flow. 22(5), 893-908(1996). doi: 10.1016/0301-9322(96)00020-1http://doi.org/10.1016/0301-9322(96)00020-1
H. Al-Diwany, J. Rose, Free convection film condensation of steam in the presence of non-condensing gases. Int. J. Heat Mass Transfer. 16(7), 1359-1369(1973). doi: 10.1016/0017-9310(73)90144-0http://doi.org/10.1016/0017-9310(73)90144-0
H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light-water power reactors. In: Third International Conference on the Peaceful Uses of Atomic Energy. pp: 93-104(1965).
S. Zhou, Y. Li, Y. Sun et al., Evaluations and classifications of the bundle effects on steam condensation based on broad pressure range experiments. Prog. Nucl. Energy. 135, 103695(2021). doi: 10.1016/j.pnucene.2021.103695http://doi.org/10.1016/j.pnucene.2021.103695
J. Su, Z. Sun, G. Fan et al., Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface. Nucl. Eng. Des. 262, 201-208(2013). doi: 10.1016/j.nucengdes.2013.05.002http://doi.org/10.1016/j.nucengdes.2013.05.002
H. Liu, N. Todreas, M. Driscoll, Driscoll. An experimental investigation of a passive cooling unit for nuclear plant containment. Nucl. Eng. Des. 199(3), 243-255(2000). doi: 10.1016/S0029-5493(00)00229-6http://doi.org/10.1016/S0029-5493(00)00229-6
A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection. Int. J. Heat Mass Transfer. 86, 1-15(2015). doi: 10.1016/j.ijheatmasstransfer.2015.02.034http://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034
P. Peterson, Theoretical basis for the uchida correlation for condensation in reactor containment.Nuc Eng Des. 162, 301-306(1996). doi: 10.1016/0029-5493(95)01125-0http://doi.org/10.1016/0029-5493(95)01125-0
J. Collier, Convective boiling and condensation.UK: McGraw-Hill, 314-359(1972).
E. Sparrow, W. Minkowycz, M. Saddy, Forced convection condensation in the presence of noncondensables and interfacial resistance. Int J Heat Mass Transfe. 10, 1829-1845(1967). doi: 10.1016/0017-9310(67)90053-1http://doi.org/10.1016/0017-9310(67)90053-1
A. Dyj, C. Jwlb, A. Dk et al., Effective reduction of non-condensable gas effects on condensation heat transfer: Surface modification and steam jet injection. Appl. Therm. Eng. 174, 115264(2020). doi: 10.1016/j.applthermaleng.2020.115264http://doi.org/10.1016/j.applthermaleng.2020.115264
X. Dong, X. Ma, Y. Zhang et al., Experimental investigation of dropwise condensation in the presence of non-condensable gas. J. Eng. Thermophys. 25(6), 1001-1003(2004).
G. Fan, P. Tong, Z. Sun et al., Experimental study of pure steam and steam-air condensation over a vertical corrugated tube. Prog. Nucl. Energy. 109, 239-249(2018). doi: 10.1016/j.pnucene.2018.08.020http://doi.org/10.1016/j.pnucene.2018.08.020
P. Tong, G. Fan, Z. Sun et al., Experimental study of steam-air condensation over a vertically longitudinal finned tube. Int. J. Heat Mass Transfer. 89, 1230-1238(2015). doi: 10.1016/j.ijheatmasstransfer.2015.06.036http://doi.org/10.1016/j.ijheatmasstransfer.2015.06.036
Z. Niu, H. Guo, G. Fan, Study of different surface treatment methods influence on the condensation hear transfer characteristics of vertical tube external surface. In: Progress Report on China Nuclear Science & Technology. pp:169-175(2019). doi: 10.26914/c.cnkihy.2019.056509http://doi.org/10.26914/c.cnkihy.2019.056509
P. Peterson, Theoretical basis for the Uchida correlation for condensation in reactor containments. Nucl. Eng. Des. 162(2-3), 301-306(1996). doi: 10.1016/0029-5493(95)01125-0http://doi.org/10.1016/0029-5493(95)01125-0
E. Sparrow, W. Minkowycz, M. Saddy, Forced convection condensation in the presence of noncondensables and interfacial resistance. Int. J. Heat Mass Transfer. 10(12), 1829-1845(1967). doi: 10.1016/0017-9310(67)90053-1http://doi.org/10.1016/0017-9310(67)90053-1
B. Quan, H. Bian, M. Ding et al., Numerical Analysis on the Characteristics of Steam Condensation in Presence of Air under Vertical Tube Bundle Conditions. Nucl. Power Eng. 40(05), 29-34(2019). doi: 10.13832/j.jnpe.2019.05.0029http://doi.org/10.13832/j.jnpe.2019.05.0029
J. Rosa, A. Escriva, L. Herranz et al., Review on condensation on the containment structures. Prog. Nucl. Energy. 51(1), 32-66(2009). doi: 10.1016/j.pnucene.2008.01.003http://doi.org/10.1016/j.pnucene.2008.01.003
H. Bian, Z. Sun, M. Ding et al., Numerical simulations on steam condensation heat transfer characteristics in the presence of air. J. Harbin Eng. Univ. 40(2), 426-432(2019). doi: 10.11990/jheu.201709070http://doi.org/10.11990/jheu.201709070 (in Chinese)
M. Kawakubo, M. Aritomi, H. Kikura, T. Komeno, An experimental study on the cooling characteristics of passive containment cooling systems. J. Nucl. Sci. Technol. 46(4), 339–345 (2009). doi: 10.1080/18811248.2007.9711539http://doi.org/10.1080/18811248.2007.9711539
P. Roache, Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 116(3), 405-413(1994). doi: 10.1115/1.2910291http://doi.org/10.1115/1.2910291
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution