1.Institute of Applied Physics and Computational Mathematics (IAPCM), Beijing 100094, China
2.CAEP Software Centre for High Performance Numerical Simulation (CAEP-SCNS), Beijing 100088, China
*li_gang@iapcm.ac.cn
Scan for full text
Li Deng, Gang Li, Bao-Yin Zhang, et al. A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0. [J]. Nuclear Science and Techniques 33(8):108(2022)
Li Deng, Gang Li, Bao-Yin Zhang, et al. A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0. [J]. Nuclear Science and Techniques 33(8):108(2022) DOI: 10.1007/s41365-022-01092-0.
JMCT is a large-scale, high-fidelity, three-dimensional general neutron-photon-electron-proton transport Monte Carlo software system. It was developed based on the combinatorial geometry parallel infrastructure JCOGIN and the adaptive structured mesh infrastructure JASMIN. JMCT is equipped with CAD modeling and visualizes the image output. It supports the geometry of the body and the structured/unstructured mesh. JMCT has most functions, variance reduction techniques, and tallies of the traditional Monte Carlo particle transport codes. Two energy models, multi-group and continuous, are provided. In recent years, some new functions and algorithms have been developed, such as Doppler broadening on-the-fly (OTF), uniform tally density (UTD), consistent adjoint driven importance sampling (CADIS), fast criticality search of boron concentration (FCSBC), domain decomposition (DD), adaptive control rod moving (ACRM), and random geometry (RG) etc. The JMCT is also coupled with the discrete ordinate S,N, code JSNT to generate source-biasing factors and weight-window parameters. At present, the number of geometric bodies, materials, tallies, depletion zones, and parallel processors are sufficiently large to simulate extremely complicated device problems. JMCT can be used to simulate reactor physics, criticality safety analysis, radiation shielding, detector response, nuclear well logging, and dosimetry calculations. In particular, JMCT can be coupled with depletion and thermal-hydraulics for the simulation of reactor nuclear-hot feedback effects. This paper describes the progress in advanced modeling, high-performance numerical simulation of particle transport, multiphysics coupled calculations, and large-scale parallel computing.
Advanced modelingHigh performance numerical simulationMulti-physics coupled calculationLarge-scale parallel computingJMCT
B.Y. Zhang, G. Li, L. Deng et al., JCOGIN: A Parallel Programming Infrastructure for Monte Carlo Particle Transport. PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014.
Z. Mo, A. Zhang, X. Cao, et al., JASMIN: a parallel software infrastructure for scientific computing. Front. Compute. Sci. China 4(4), 480-488 (2020). doi: 10.1007/s11704-010-0120-5http://doi.org/10.1007/s11704-010-0120-5
L. Deng, T. Ye, G. Li et al., 3-D Monte Carlo neutron-photon transport code JMCT and its algorithms. PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014.
N. Horelik, B. Herman, Benchmark for evaluation and validation of reactor simulations (BEAVRS). RELEASE rev. 1.0.1, MIT Computational Reactor Physics Group, July 7, 2013.
Andrew T and Godfrey , VERA Core Physics Benchmark Progression Problem Specifications. Revision 2, CASL-U-2013-0131-002, March 29, 2013.
F. Fausto, Zero power physics test simulations for the AP1000 PWR. CASL-U-2014-0012-001, 2014.
M.G. Zheng, J.Q. Yan, Large power advanced passive PWR CAP1400. Shanghai: Shanghai Jiaotong University Press, 2018.
D.J. Kelly, T.M. Sutton, S.C. Wilson, MC21 Analysis of the Nuclear Energy Agency Monte Carlo Performance Benchmark Problem. Proc. Advances in Reactor Physics - Linking Research, Industry, and Education (PHYSOR 2012), Knoxville, Tennessee, American Nuclear Society, April 15-20, 2012.
P.K. Romano, N.E. Horelik et al., OpenMC: A state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 82, 90-97 (2015). doi: 10.1016/j.anucene.2014.07.048http://doi.org/10.1016/j.anucene.2014.07.048
M. Stephen, KENO-VI Primer: A Primer for criticality calculations with SCALE/KENO-VI using GeeWiz. Oak Ridge National Laboratory, 2008.
R.E. MacFarlane, D.W. Muir, The NJOY Nuclear Data Processing System-Version 91. LA-12740-1994.
C. Yang, T.P. Cheng, L. Deng et al., Development of 3-D parallel first-collision source method for discrete ordinate code JSNT-S. Ann. Nucl. Energy 135, 106942 (2020). doi: 10.1016/j.anucene.2019.106942http://doi.org/10.1016/j.anucene.2019.106942
Y.G. Fu, L. Deng, G. Li, Preliminary study on numerical solver of inhomogeneous burnup equations. Acta Phys. Sin. 67(17), 172802 (2018). doi: 10.7498/aps.67.20172650http://doi.org/10.7498/aps.67.20172650 (in Chinese)
Y. Ma, Y.G. Fu, G.M. Qin, The design of JLAMT: An aided tool for large-scale complex physical modeling. Advance in Intelligent Systems and Computing, 809, 877-883 (2019). doi: 10.1007/978-3-319-95588-9_74http://doi.org/10.1007/978-3-319-95588-9_74
Y. Cao, Z.Y. Mo, L. Xiao et al., Efficient visualization of high-resolution virtual nuclear reactor. J. Visualization 21, 857-871 (2018). doi: 10.1007/s12650-018-0487-1http://doi.org/10.1007/s12650-018-0487-1
X-5 Monte Carlo team, MCNP-A General Monte Carlo Code for N-Particle Transport Code. version 5 manual, LA-UR-03-1987, April 24, 2003.
HEMANM , TRKOV A, ENDF-6 formats manual, data formats and procedures for the evaluated nuclear data file ENDF/B-VI and ENDF-VII. BNL, 2009.
Z.G. Ge, R.R. Xu, H.C. Wu et al., CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library. EPJ Web of Conferences 239, 09001 (2020). doi: 10.1051/epjconf/202023909001http://doi.org/10.1051/epjconf/202023909001
R.W. Roussin, BUGLE-80 Coupled 47 Neutron and 20 Gamma-Ray, P3 Cross Section Library for LWR Shielding Calculations. DLC-75 (1980).
L.L. Carter, E.D. Cashwell, Particle Transport Simulation with the Monte Carlo Method, ERDA Critical Review Series. TID-26607 (1975).
G. Li, B. Zhang, L. Deng et al., Combinatorial Geometry Domain Decomposition Strategies for Monte Carlo Simulations. M&C 2013, Sun Valley, Idaho, May 5-9, pp.434-443 (2013).
R. Procassini, D. Cullen, G. Greenman et al., New capabilities in MERCURY: a modern Monte Carlo particle transport code. M&C+SNA, Monterey California, April 15-19, 2007.
D.J. Kelly, T.M. Sutton, S.C. Wilson, MC21 Analysis of the Nuclear Energy Agency Monte Carlo Performance Benchmark Problem. Proc. Advances in Reactor Physics—Linking Research, Industry, and Education (PHYSOR 2012), Knoxville, Tennessee, April 15-20, 2012.
D.H. Shangguan, G. Li, B.Y. Zhang et al., Uniform tally density-based strategy for efficient global tallying in Monte Carlo criticality calculation. Nucl. Sci. Eng. 182(4), 555-562 (2016). doi: 10.13182/NSE15-32http://doi.org/10.13182/NSE15-32
X.G. Liu, L. Deng, Z.H. Hu et al., Study of on-the-fly Doppler broadening in JMCT Program. Acta Phys. Sin. 65(9), 092501 (2016). doi: 10.7498/aps.65.092501http://doi.org/10.7498/aps.65.092501 (in Chinese)
R. Li, L.Y. Zhang, D. Shi et al., Criticality search of soluble boron iteration in Monte Carlo code JMCT. Energy Procedia, 127, 329-334 (2017). doi: 10.1016/j.egypro.2017.08.118http://doi.org/10.1016/j.egypro.2017.08.118
Z. Zheng, Q.L. Mei, L. Deng, Study on variance reduction technique based on adjoint Discrete Ordinate method. Ann. Nucl. Energy 112, 374-386 (2018). doi: 10.1016/j.anucene.2017.10.028http://doi.org/10.1016/j.anucene.2017.10.028
Z. Zheng, M.Q. Wang, L. Deng, Application of a 3D Discrete Ordinates-Monte Carlo coupling method to deep-penetration shielding calculation. Nucl. Eng. Des. 326, 87-96 (2018). doi: 10.1016/j.nucengdes.2017.11.005http://doi.org/10.1016/j.nucengdes.2017.11.005
L. Deng, Z.H. Hu, R. Li et al., The coupled neutron transport calculation of Monte Carlo multi-group and continuous cross section. Ann. Nucl. Energy 127, 433-436 (2019). doi: 10.1016/j.anucene.2018.12.032http://doi.org/10.1016/j.anucene.2018.12.032
M.B. Emmett, MORSE-CGA - A Monte Carlo radiation transport code with array geometry capability. ORNL-6174, 1985.
D. She, B. Xia, J. Guo et al., Prediction calculations for the first criticality of the HTR-PM using the PANGU code. Nucl. Sci. Tech. 32, 90 (2021). doi: 10.1007/s41365-021-00936-5http://doi.org/10.1007/s41365-021-00936-5
D.J. Kelly, B.R. Herman et al., Analysis of select BEAVRS PWR benchmark cycle 1 results using MC21 and OpenMC. PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014.
G. Li, L. Deng, B.Y. Zhang et al., JMCT Monte Carlo analysis of BEAVRS benchmark: hot zero power results. Acta Phys. Sin. 65(5), 052801 (2016). doi: 10.7498/aps.65.052801http://doi.org/10.7498/aps.65.052801 (in Chinese)
P.J. Turinsky, D.B. Kothe, Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL). J. Computational Phys. 313, 367-376 (2016). doi: 10.1016/j.jcp.2016.02.043http://doi.org/10.1016/j.jcp.2016.02.043
J. Chen, Z.Y. Liu, C. Zhao et al., A new high-fidelity neutronics code NECP-X. Ann. Nucl. Energy 116, 417-428 (2018). doi: 10.1016/j.anucene.2018.02.049http://doi.org/10.1016/j.anucene.2018.02.049
L.H. Peng, C.T. Tang, W.Y. Yang, Development of advanced neutronics code SCAP-N for reactor core high fidelity simulation. Nuclear Power Engineering 42(2), 213-218 (2021). (in Chinese)
L.H. Peng, B. Yang, C.T. Tang et al., Zero power physics test high fidelity simulation for first core of Guo He One (CAP1400) reactor. High Power Laser and Particle Beams 34(2), 026002 (2022). doi: 10.11884/HPLPB202234.210372http://doi.org/10.11884/HPLPB202234.210372 (in Chinese)
L. Deng, R. Li, Q.X. Din et al., Qinshan-I reactor shielding simulation and sensitivity analysis based on JMCT monte carlo code. Nuclear Power Engineering 42(2), 173-179 (2021). (in Chinese)
L. Deng, R. Li, X. Wang et al., Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis. Acta Phys. Sin. 69(11), 112801 (2020). doi: 10.7498/aps.69.20200279http://doi.org/10.7498/aps.69.20200279 (in Chinese)
G. Li, L. Deng, Optimized voxel model construction and simulation research in BNCT. Chinese Phy. C 30(2), 171-177 (2006).
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution