1.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 510275, China
*chengh78@mail.sysu.edu.cn;
chengsb3@mail.sysu.edu.cn
Scan for full text
Shao-Jie Tan, Yu-Bao Zhong, Hui Cheng, et al. Experimental investigation on the characteristics of molten lead-bismuth non-eutectic alloy fragmentation in water. [J]. Nuclear Science and Techniques 33(9):115(2022)
Shao-Jie Tan, Yu-Bao Zhong, Hui Cheng, et al. Experimental investigation on the characteristics of molten lead-bismuth non-eutectic alloy fragmentation in water. [J]. Nuclear Science and Techniques 33(9):115(2022) DOI: 10.1007/s41365-022-01097-9.
To study the interaction between molten non-eutectic alloys and subcooled water during severe nuclear accidents, an experimental investigation was carried out by injecting molten Lead-Bismuth Non-Eutectic alloy (LBNE, 70% Pb-30% Bi) into the water in a free-fall style using the Visualized Thermo-hydraulic characteristics in Melt Coolant Interaction (VTMCI) facility. The effects of various experimental parameters, including water temperature, melt temperature, melt penetration velocity, and water depth, on the molten LBNE jet fragmentation characteristics were studied. The research shows that compared with Lead-Bismuth Eutectic, larger fragments, less spherical fragments, and more porous debris beds are generated for LBNE. Higher water or melt temperatures facilitate molten LBNE fragmentation, resulting in higher debris bed sphericity and lower debris bed porosity. A higher melt temperature leads to smaller fragment sizes, except that a cake-like debris bed is formed for very high alloy superheat and very low water subcooling. More approximate spherical particles were generated in the film boiling zone than in the thermal interaction zone. Fragment size decreases with an increase in the melt penetration velocity, but the debris bed porosity and sphericity variation were not obvious. The effect of water depth on molten LBNE fragmentation behavior was not obvious under the current experimental conditions. Compared with other fragmentation theories, the Weber number theory better predicted the fragment volume mean diameter. In addition, a melt-jet behavior mode diagram that describes the competition between the hydrodynamic and thermal interactions and diagrams of debris bed porosity and sphericity, that show the influence of thermal factors were analyzed in this study.
Fuel-coolant interactionCoolant-coolant interactionDebris bedLead-bismuth non-eutectic alloy-water interactionFragmentation behavior
X. Luo, L.-K. Cao, W.-P. Feng et al., Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model. Nucl. Sci. Tech. 33, 27 (2022). doi: 10.1007/s41365-022-01010-4http://doi.org/10.1007/s41365-022-01010-4
Z.-X. Gu, Q.-X. Zhang, Y. Gu et al., Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor. Nucl. Sci. Tech. 32, 52 (2021). doi: 10.1007/s41365-021-00887-xhttp://doi.org/10.1007/s41365-021-00887-x
A. Tentner, E. Parma, T. Wei et al., Evaluation of design measures for severe accident prevention and consequence mitigation (Anl-Geniv-128, Argonne, 2010)
T. Suzuki, K. Kamiyama, H. Yamano et al., A scenario of core disruptive accident for Japan sodium-cooled fast reactor to achieve in-vesselretention. J. Nucl. Sci. Technol. 51, 493-513 (2014). doi: 10.1080/00223131.2013.877405http://doi.org/10.1080/00223131.2013.877405
A.N. Hidayati, A. Waris, A.P.A. Mustari et al., Moving particle semi-implicit simulation on the molten Wood’s metal downward relocation process. Nucl. Sci. Tech. 32, 88 (2021). doi: 10.1007/s41365-021-00922-xhttp://doi.org/10.1007/s41365-021-00922-x
F. Salari, A. Rabiee, F. Faghihi, Investigation of ex-vessel core catcher for SBO accident in VVER-1000/V528 containment using MELCOR code. Nucl. Sci. Tech. 32, 43 (2021). doi: 10.1007/s41365-021-00879-xhttp://doi.org/10.1007/s41365-021-00879-x
H. Cheng, S. Cheng, J. Zhao, Study on corium jet breakup and fragmentation in sodium with a GPU-accelerated color-gradient lattice Boltzmann solver. Int. J. Multiphas. Flow. 126, 103264 (2020). doi: 10.1016/j.ijmultiphaseflow.2020.103264http://doi.org/10.1016/j.ijmultiphaseflow.2020.103264
S. Wang, M. Flad, W. Maschek et al., Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling. Prog. Nucl. Energ. 50, 363-369 (2008). doi: 10.1016/j.pnucene.2007.11.018http://doi.org/10.1016/j.pnucene.2007.11.018
J. Bang, G.H. Choi, D.-W. Jerng et al., Analysis of steam generator tube rupture accidents for the development of mitigation strategies. Nucl. Eng. Technol. (2021). doi: 10.1016/j.net.2021.07.032http://doi.org/10.1016/j.net.2021.07.032
Y. Xiang, S. Thakre, W. Ma et al., A scoping study on debris bed formation from metallic melt coolant interactions. Nucl. Eng. Des. 385, 111533 (2021). doi: 10.1016/j.nucengdes.2021.111533http://doi.org/10.1016/j.nucengdes.2021.111533
D. Magallon, I. Huhtiniemi, H. Hohmann, Lessons learnt from FARO/TERMOS corium melt quenching experiments, in Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (1997)
D. Magallon, Characteristics of corium debris bed generated in large-scale fuel-coolant interaction experiments. Nucl. Eng. Des. 236, 1998-2009 (2006). doi: 10.1016/j.nucengdes.2006.03.038http://doi.org/10.1016/j.nucengdes.2006.03.038
I. Huhtiniemi, D. Magallon, Insight into steam explosions with corium melts in KROTOS. Nucl. Eng. Des. 204, 391-400 (2001). doi: 10.1016/S0029-5493(00)00319-8http://doi.org/10.1016/S0029-5493(00)00319-8
D. Magallon, I. Huhtiniemi, Corium melt quenching tests at low pressure and subcooled water in FARO. Nucl. Eng. Des. 204, 369-376 (2001). doi: 10.1016/S0029-5493(00)00318-6http://doi.org/10.1016/S0029-5493(00)00318-6
Y. Ye, X. Chen, S. Cheng, Experimental study on melt-jet behavior during SFR core disruptive accidents using simulant materials. Ann. Nucl. Energy. 148, 107705 (2020). doi: 10.1016/j.anucene.2020.107705http://doi.org/10.1016/j.anucene.2020.107705
H. Cheng, Z. Mai, Y. Li et al., Fundamental experiment study on the fragmentation characteristics of molten lead jet direct contact with water. Nucl. Eng. Des. 386, 111560 (2022). doi: 10.1016/j.nucengdes.2021.111560http://doi.org/10.1016/j.nucengdes.2021.111560
H. Cheng, X. Chen, Y. Ye et al., Systematic experimental investigation on the characteristics of molten lead-bismuth eutectic fragmentation in water. Nucl. Eng. Des. 371, 110943 (2021). doi: 10.1016/j.nucengdes.2020.110943http://doi.org/10.1016/j.nucengdes.2020.110943
L. Manickam, P. Kudinov, W. Ma et al., On the influence of water subcooling and melt jet parameters on debris formation. Nucl. Eng. Des. 309, 265-276 (2016). doi: 10.1016/j.nucengdes.2016.09.017http://doi.org/10.1016/j.nucengdes.2016.09.017
L. Manickam, S. Bechta, W. Ma, On the fragmentation characteristics of melt jets quenched in water. Int. J. Multiphas. Flow. 91, 262-275 (2017). doi: 10.1016/j.ijmultiphaseflow.2017.02.005http://doi.org/10.1016/j.ijmultiphaseflow.2017.02.005
Y. Abe, H. Nariai, Y. Hamada, The Trigger Mechanism of Vapor Explosion. J. Nucl. Sci. Technol. 39, 845-853 (2002). doi: 10.1080/18811248.2002.9715268http://doi.org/10.1080/18811248.2002.9715268
Y. Abe, T. Kizu, T. Arai et al., Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl. Eng. Des. 230, 277-291 (2004). doi: 10.1016/j.nucengdes.2003.11.032http://doi.org/10.1016/j.nucengdes.2003.11.032
W. Huang, Study on Fragmentation Behavior of Lead-Bismuth in Contact with Water during SGTR Accident in the Lead-based Reactor (University of Science and Technology of China, 2015)
D. H. Cho, Experiments on explosive interactions between zirconium-containing melt and water, in 6th International Conference on Nuclear Engineering (10-15 May, 1998).
J.H. Song, J.H. Kim, S.W. Hong et al., The effect of corium composition and interaction vessel geometry on the prototypic steam explosion. Ann. Nucl. Energy. 33, 1437-1451 (2006). doi: 10.1016/j.anucene.2006.09.005http://doi.org/10.1016/j.anucene.2006.09.005
R.C. Hansson, T.N. Dinh, L.T. Manickam, A study of the effect of binary oxide materials in a single droplet vapor explosion. Nucl. Eng. Des. 264, 168-175 (2013). doi: 10.1016/j.nucengdes.2013.02.017http://doi.org/10.1016/j.nucengdes.2013.02.017
J. Song, H. Kim, S. Hong et al., A use of prototypic material for the investigation of severe accident progression. Prog. Nucl. Energ. 93, 297-305 (2016). doi: 10.1016/j.pnucene.2016.09.003http://doi.org/10.1016/j.pnucene.2016.09.003
A. Ciampichetti, D. Bernardi, T. Cadiou et al., LBE-water interaction in LIFUS 5 facility under different operating conditions. J. Nucl. Mater. 415, 449-459 (2011). doi: 10.1016/j.jnucmat.2011.04.051http://doi.org/10.1016/j.jnucmat.2011.04.051
Y. Sibamoto, Y. Kukita, H. Nakamura, Small-scale Experiment on Subcooled Water Jet Injection into Molten Alloy by Using Fluid Temperature-Phase Coupled Measurement and Visualization. J. Nucl. Sci. Technol. 44, 1059-1069 (2007). doi: 10.1080/18811248.2007.9711347http://doi.org/10.1080/18811248.2007.9711347
H.S. Park, Shibamoto , Y., Maruyama et al., Visualization of plunging jet behavior in molten alloy, in Proceedings of 7th International Conference on Nuclear Engineering (Tokyo, Japan, 1999)
W. Huang, R. Sa, D. Zhou et al., Experimental study on fragmentation behaviors of molten LBE and water contact interface. Nucl. Sci. Tech. 26, 122-126 (2015). doi: 10.13538/j.1001-8042/nst.26.060601http://doi.org/10.13538/j.1001-8042/nst.26.060601
W. Huang, D. Zhou, R. Sa et al., Experimental study on thermal-hydraulic behaviour of LBE and water interface. Prog. Nucl. Energ. 99, 1-10 (2017). doi: 10.1016/j.pnucene.2017.04.005http://doi.org/10.1016/j.pnucene.2017.04.005
X. Jingyao, Study on Performance and Purification Technology of Lead-bismuth Alloy for Advanced Nuclear Reactor (University Of Science And Technology Of China, 2013)
L.H. xiong, C.T. kuan, Experimental Investigation on the Fragmentation Behavior of High Temperature Molten Melt Drops in Coolants. Nuclear Power Engineering, 24, 302-306 (2003).
S. Cornet, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies-Edition 2015 (2015)
S. Kondo, K. Konishi, M. Isozaki et al., Experimental study on simulated molten jet-coolant interactions. Nucl. Eng. Des. 155, 73-84 (1995). doi: 10.1016/0029-5493(94)00870-5http://doi.org/10.1016/0029-5493(94)00870-5
H.K. Fauske, On the Mechanism of Uranium Dioxide-Sodium Explosive Interactions. Nucl. Sci. Eng. 51, 95-101 (1973). doi: 10.13182/NSE73-A26584http://doi.org/10.13182/NSE73-A26584
A. MN, Estimated equations for water flow through packed bed of multi-size particles. J. Eng. Sci, 2, 779-798 (2009).
L. Li, S. Gong, W. Ma, Experimental Study of Two-Phase Flow Regime and Pressure Drop in a Particulate Bed Packed with Multidiameter Particles. Nucl. Technol. 177, 107-118 (2017). doi: 10.13182/nt12-a13331http://doi.org/10.13182/nt12-a13331
Y. Iwasawa, Y. Abe, Scaling analysis of melt jets and solidification modes. Ann. Nucl. Energy. 125, 231-241 (2019). doi: 10.1016/j.anucene.2018.10.059http://doi.org/10.1016/j.anucene.2018.10.059
S. Cheng, P. Gong, S. Wang et al., Investigation of flow regime in debris bed formation behavior with nonspherical particles. Nucl. Eng. Technol. 50, 43-53 (2018). doi: 10.1016/j.net.2017.09.003http://doi.org/10.1016/j.net.2017.09.003
S. Cheng, X.a. Li, F. Liang et al., Study on sloshing motion in a liquid pool with non-spherical particles. Prog. Nucl. Energ. 117, 103086 (2019). doi: 10.1016/j.pnucene.2019.103086http://doi.org/10.1016/j.pnucene.2019.103086
S. Ergun, Fluid flow through packed columns. 48, 89-94 (1952).
Y. Abe, E. Matsuo, T. Arai, et al., Fragmentation behavior during molten material and coolant interactions. Nucl. Eng. Des. 236, 1668-1681 (2006). doi: 10.1016/j.nucengdes.2006.04.008http://doi.org/10.1016/j.nucengdes.2006.04.008
C.V. P, Liquid-Vapor Phase-Change Phenomena (Hemishere, 1992)
R. Saito, Y. Abe, H. Yoshida, Breakup and fragmentation behavior of molten material jet in multi-channel of BWR lower plenum. J. Nucl. Sci. Technol. 53, 147-160 (2015). doi: 10.1080/00223131.2015.1027756http://doi.org/10.1080/00223131.2015.1027756
M. Saito, K. Sato, S. Imahori, Experimental study on penetration behavior of water jet into Freon-11 and liquid nitrogen. ANS Proceedings: National Heat Transfer Conference (1988)
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution