1.School of Physics and optoelectronic engineering, Anhui University, Hefei 230601, China
hength@ahu.edu.cn
Scan for full text
Tai-Hua Heng, Yao-Wu Chu. Properties of Titanium isotopes in complex momentum representation within relativistic mean-field theory. [J]. Nuclear Science and Techniques 33(9):117(2022)
Tai-Hua Heng, Yao-Wu Chu. Properties of Titanium isotopes in complex momentum representation within relativistic mean-field theory. [J]. Nuclear Science and Techniques 33(9):117(2022) DOI: 10.1007/s41365-022-01098-8.
The self-consistent quadruple potential is deduced within the relativistic mean-field (RMF) framework and substituted into the Hamiltonian, which is calculated using the complex momentum representation (CMR). Considering even-even titanium isotopes as an example, this study investigated various properties, including the resonant states of neutron-rich nuclei in the RMF-CMR model, and used them to describe the binding energy. The abrupt decrease in the two-neutron separation energy (,S,2n,) corresponds to the traditional magic number. The resonant and bound states are simultaneously exposed in the complex moment plane, where the continuum is along the integration contour. The four oblate neutron-rich nuclei ,72-78,Ti are weakly bound or resonant because their Fermi energies are approximately 0 MeV. The root-mean-square (RMS) radii of these nuclei increase suddenly compared with those of others (neutron number ,N,<, 48). Moreover,78,Ti and ,76,Ti are determined as drip-line nucleons by the value of ,S,2n, and the energy levels, respectively. Finally, the weak-bounded character can be represented by diffuse density probability distributions.
Resonant statesSelf-consistent potentialComplex momentum representation
D.S. Ahn, N. Fukuda, H. Geissel et al., Location of the Neutron Dripline at Fluorine and Neon. Phys. Rev. Lett. 123, 212501 (2019). doi: 10.1103/PhysRevLett.123.212501http://doi.org/10.1103/PhysRevLett.123.212501
H. Sakurai, S.M. Lukyanov, M. Notani et al., Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B. 448, 180 (1999). doi: 10.1016/S0370-2693(99)00015-5http://doi.org/10.1016/S0370-2693(99)00015-5
I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985). doi: 10.1103/PhysRevLett.55.2676http://doi.org/10.1103/PhysRevLett.55.2676
A. Ozawa, T. Kobayashi, T. Suzuki et al., New magic number, N=16, near the Neutron Drip Line. Phys. Rev. Lett. 84, 5493 (2000). doi: 10.1103/PhysRevLett.84.5493http://doi.org/10.1103/PhysRevLett.84.5493
S.S. Zhang, S.Y. Zhong, B. Shao et al., Self-consistent description of the halo nature of 31Ne with continuum and pairing correlations. J. Phys. G: Nucl. Part. Phys. 49, 025102(2022). doi: 10.1088/1361-6471/ac430ehttp://doi.org/10.1088/1361-6471/ac430e
S.Y. Zhong, S.S. Zhang, X.X. Sun et al., Study of the deformed halo nucleus 31Ne with Glauber model based on microscopic self-consistent structures. Sci. China-Phys. Mech. Astron. 65 262011 (2022). doi: 10.1007/s11433-022-1894-6http://doi.org/10.1007/s11433-022-1894-6
Y. Zhang, M. Matsuo, and J. Meng, Pair correlation of giant halo nuclei in continuum Skyrme-Hartree-Fock-Bogoliubov theory. Phys. Rev. C 86, 054318 (2012). doi: 10.1103/PhysRevC.86.054318http://doi.org/10.1103/PhysRevC.86.054318
D.Z. Chen, D.L. Fang and C.L. Bai, Impact of finite-range tensor terms in the Gogny force on the β-decay of magic nuclei. Nucl. Sci. Tech. 32, 74 (2021). doi: 10.1007/s41365-021-00908-9http://doi.org/10.1007/s41365-021-00908-9
J. Walecka, A theory of highly condensed matter. Ann. Phys. (N.Y.) 83, 491 (1974). doi: 10.1016/0003-4916(74)90208-5http://doi.org/10.1016/0003-4916(74)90208-5
Z.M. Niu, Y.F. Niu, Q. Liu et al., Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing. Phys. Rev. C 87, 051303(R) (2013). doi: 10.1103/PhysRevC.87.051303http://doi.org/10.1103/PhysRevC.87.051303
Z.M. Niu, Y.F. Niu, H.Z. Liang et al., Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations. Phys. Rev. C 95, 044301 (2017). doi: 10.1103/PhysRevC.95.044301http://doi.org/10.1103/PhysRevC.95.044301
P. Jiang, Z.M. Niu, Y.F. Niu et al., Strutinsky shell correction energies in relativistic Hartree-Fock theory. Comparative study of nuclear masses in the relativistic mean-field model. Phys. Rev. C 98, 064323 (2018). doi: 10.1103/PhysRevC.98.064323http://doi.org/10.1103/PhysRevC.98.064323
X.M. Hua, T.H. Heng, Z.M. Niu et al., Comparative study of nuclear masses in the relativistic mean-field model. Sci. China: Phys. Mech. Astron. 55, 2414 (2012). doi: 10.1007/s11433-012-4943-yhttp://doi.org/10.1007/s11433-012-4943-y
Z.P. Li, B.Y. Song, J.M. Yao et al., Simultaneous quadrupole and octupole shape phase transitions in Thorium. Phys. Lett. B 726, 866 (2013). doi: 10.1016/j.physletb.2013.09.035http://doi.org/10.1016/j.physletb.2013.09.035
Z.P. Li, T. Nikšić, D. Vretenar et al., Microscopic analysis of nuclear quantum phase transitions in the N≈90 region. Phys. Rev. C 79, 054301 (2009). doi: 10.1103/PhysRevC.79.054301http://doi.org/10.1103/PhysRevC.79.054301
T.T. Sun, E. Hiyama, H. Sagawa et al., Mean-field approaches for hypernuclei and current experimental data. Phys. Rev. C 94 064319 (2016). doi: 10.1103/PhysRevC.94.064319http://doi.org/10.1103/PhysRevC.94.064319
Z.X. Liu, C.J. Xia, W.L. Lu et al., Relativistic mean-field approach for , and ∑ hypernuclei. Phys. Rev. C 98 024316 (2018). doi: 10.1103/PhysRevC.98.024316http://doi.org/10.1103/PhysRevC.98.024316
T.T. Sun, B.Y. Sun, and J. Meng, BCS-BEC crossover in nuclear matter with the relativistic Hartree-Bogoliubov theory. Phys. Rev. C 86 014305 (2012). doi: 10.1103/PhysRevC.86.014305http://doi.org/10.1103/PhysRevC.86.014305
T.T. Sun, S.S. Zhang, Q.L. Zhang, and C.J. Xia, Strangeness and resonance in compact stars with relativistic-mean-field models. Phys. Rev. D 99 023004 (2019). doi: 10.1103/PhysRevD.99.023004http://doi.org/10.1103/PhysRevD.99.023004
Z.M. Niu, Y.F. Niu, H.Z. Liang et al., β-decay half-lives of neutron-rich nuclei and matter flow in the r-process. Phys. Lett. B 723, 172 (2013). doi: 10.1016/j.physletb.2013.04.048http://doi.org/10.1016/j.physletb.2013.04.048
Z. Li, Z.M. Niu, and B.H. Sun, Influence of nuclear physics inputs and astrophysical conditions on r-process. Sci. China-Phys. Mech. Astron. 62, 982011 (2019). doi: 10.1007/s11433-018-9355-yhttp://doi.org/10.1007/s11433-018-9355-y
G.M. Hale, R.E. Brown, and N. Jarmie, Pole structure of the Jπ=3/2+ resonance in 5He. Phys. Rev. Lett. 59, 763 (1987). doi: 10.1103/PhysRevLett.59.763http://doi.org/10.1103/PhysRevLett.59.763
J. Humblet, B.W. Filippone, and S.E. Koonin, Level matrix, 16Nβ decay, and the 12C(α,γ)16O reaction. Phys. Rev. C 44, 2530 (1991). doi: 10.1103/PhysRevC.44.2530http://doi.org/10.1103/PhysRevC.44.2530
J.R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (JohnWiley and Sons, New York, 1972). doi: 10.1063/1.3128052http://doi.org/10.1063/1.3128052
Z.P. Li, J. Meng, Y. Zhang et al., Single-particle resonances in a deformed Dirac equation. Phys. Rev. C 81, 034311 (2010). doi: 10.1103/PhysRevC.81.034311http://doi.org/10.1103/PhysRevC.81.034311
V.I. Kukulin, V.M. Krasnopl’sky, and J. Horáček, Theory of Resonances: Principles and Applications (Kluwer Academic, Dordrecht, 1989) doi: 10.1007/978-94-015-7817-2http://doi.org/10.1007/978-94-015-7817-2
S.S. Zhang, J. Meng, S.G. Zhou et al., Analytic continuation of single-particle resonance energy and wave function in relativistic mean field theory. Phys. Rev. C 70, 034308 (2004). doi: 10.1103/PhysRevC.70.034308http://doi.org/10.1103/PhysRevC.70.034308
X.D. Xu, S.S. Zhang, A.J. Signoracci et al., Analytical continuation from bound to resonant states in the Dirac equation with quadrupole-deformed potentials. Phys. Rev. C 92, 024324 (2015). doi: 10.1103/PhysRevC.92.024324http://doi.org/10.1103/PhysRevC.92.024324
H.S. Taylor and A.U. Hazi, Comment on the stabilization method: Variational calculation of the resonance width. Phys. Rev. A 14, 2071 (1976). doi: 10.1103/PhysRevA.14.2071http://doi.org/10.1103/PhysRevA.14.2071
T.T. Sun, W.L. Lu, L. Qian et al., Green’s function method for the spin and pseudospin symmetries in the single-particle resonant states. Phys. Rev. C 99 034310 (2019). doi: 10.1103/PhysRevC.99.034310http://doi.org/10.1103/PhysRevC.99.034310
Y.T. Wang, T.T. Sun, Searching for single-particle resonances with the Green’s function method. Nucl. Sci. Tech. 32, 46 (2021). doi: 10.1007/s41365-021-00884-0http://doi.org/10.1007/s41365-021-00884-0
N. Moiseyev, Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302, 212 (1998). doi: 10.1016/S0370-1573(98)00002-7http://doi.org/10.1016/S0370-1573(98)00002-7
N. Michel, W. Nazarewicz, M. Pszajczak et al., Shell model in the complex energy plane. J. Phys. G 36, 013101 (2009). doi: 10.1088/0954-3899/36/1/013101http://doi.org/10.1088/0954-3899/36/1/013101
T. Myo, Y. Kikuchi, H. Masui et al., Recent development of complex scaling method for many-body resonances and continua in light nuclei. Prog. Part. Nucl. Phys. 79, 1-56 (2014). doi: 10.1016/j.ppnp.2014.08.001http://doi.org/10.1016/j.ppnp.2014.08.001
J.Y. Guo, X.Z. Fang, P. Jiao et al., Application of the complex scaling method in relativistic mean-field theory. Phys. Rev. C 82, 034318 (2010). doi: 10.1103/PhysRevC.82.034318http://doi.org/10.1103/PhysRevC.82.034318
M. Shi, J.Y. Guo, Q. Liu et al., Relativistic extension of the complex scaled Green function method. Phys. Rev. C 92, 054313 (2015). doi: 10.1103/PhysRevC.92.054313http://doi.org/10.1103/PhysRevC.92.054313
M. Shi, Q. Liu, Z.M. Niu et al., Relativistic extension of the complex scaling method for resonant states in deformed nuclei. Phys. Rev. C 90, 034319 (2014). doi: 10.1103/PhysRevC.90.034319http://doi.org/10.1103/PhysRevC.90.034319
N. Li, M. Shi, J.Y. Guo et al., Probing Resonances of the Dirac Equation with Complex Momentum Representation. Phys. Rev. Lett. 117, 062502 (2016). doi: 10.1103/PhysRevLett.117.062502http://doi.org/10.1103/PhysRevLett.117.062502
K.M. Ding, M. Shi, J.Y. Guo et al., Resonant-continuum relativistic mean-field plus BCS in complex momentum representation. Phys. Rev. C 98, 014316 (2018). doi: 10.1103/PhysRevC.98.014316http://doi.org/10.1103/PhysRevC.98.014316
Y.W. Chu, T.H. Heng, Exploring the halo phenomena of medium-mass nuclei having approximately Z= 40 with point-coupled parameters in complex momentum representations. Chinese Physics C 45, 074107. doi: 10.1088/1674-1137/abfa84http://doi.org/10.1088/1674-1137/abfa84
Y.J. Tian, Q. Liu, T.H. Heng et al., Research on the halo in 31Ne with the complex momentum representation method. Phys. Rev. C 95, 064329 (2017). doi: 10.1103/PhysRevC.95.064329http://doi.org/10.1103/PhysRevC.95.064329
X.N. Cao, Q. Liu, and J.Y. Guo, Prediction of halo structure in nuclei heavier than 37Mg with the complex momentum representation method. Phys. Rev. C 99, 014309 (2019). doi: 10.1103/PhysRevC.99.014309http://doi.org/10.1103/PhysRevC.99.014309
Z. Fang, M. Shi, J.Y. Guo et al., Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method. Phys. Rev. C 95, 024311 (2017). doi: 10.1103/PhysRevC.95.024311http://doi.org/10.1103/PhysRevC.95.024311
J. Meng, Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny forces and their application. Nucl. Phys. A 635, 3 (1998). doi: 10.1016/S0375-9474(98)00178-Xhttp://doi.org/10.1016/S0375-9474(98)00178-X
J.Y. Fang, S.W. Chen and T.H. Heng, Solution to the Dirac equation using the finite difference method. Nucl. Sci. Tech. 31, 15 (2020). doi: 10.1007/s41365-020-0728-6http://doi.org/10.1007/s41365-020-0728-6
M. Wang, W.J. Huang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C 45 030003 (2021). doi: 10.1088/1674-1137/abddafhttp://doi.org/10.1088/1674-1137/abddaf
M.L. Cortés, W. Rodriguez, P. Doornenbal et al., Shell evolution of N=40 isotones towards 60Ca: First spectroscopy of 62Ti. Phys. Lett. B 800 135071 (2020). doi: 10.1016/j.physletb.2019.135071http://doi.org/10.1016/j.physletb.2019.135071
S. Michimasa, M. Kobayashi, Y. Kiyokawa et al., Mapping of a new deformation region around 62Ti. Phys. Rev. Lett. 125, 122501 (2020). doi: 10.1103/PhysRevLett.125.122501http://doi.org/10.1103/PhysRevLett.125.122501
D. Wu, C.L. Bai, H. Sagawa et al., Contributions of optimized tensor interactions on the binding energies of nuclei. Nucl. Sci. Tech. 31 14 (2020). doi: 10.1007/s41365-020-0727-7http://doi.org/10.1007/s41365-020-0727-7
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution